R/mcmc.r

Defines functions gam.mh lpl devg bSb dmvn d.mvt dmvt r.mvt rmvt

Documented in dmvn d.mvt gam.mh r.mvt

## Simple post fit mcmc for mgcv.
## (c) Simon N. Wood (2020)

## some useful densities (require mgcv::rmvn)...

rmvt <- function(n,mu,V,df) {
## simulate multivariate t variates  
  y <- rmvn(n,mu*0,V)
  v <- rchisq(n,df=df)
  t(mu + t(sqrt(df/v)*y))
}

r.mvt <- function(n,mu,V,df) rmvt(n,mu,V,df)

dmvt <- function(x,mu,V,df,R=NULL) {
## multivariate t log density...
  p <- length(mu);
  if (is.null(R)) R <- chol(V)
  z <- forwardsolve(t(R),x-mu)
  k <- - sum(log(diag(R))) - p*log(df*pi)/2 + lgamma((df+p)/2) - lgamma(df/2)
  k - if (is.matrix(z)) (df+p)*log1p(colSums(z^2)/df)/2 else (df+p)*log1p(sum(z^2)/df)/2
}

d.mvt <- function(x,mu,V,df,R=NULL) dmvt(x,mu,V,df,R)

dmvn <- function(x,mu,V,R=NULL) {
## multivariate normal density mgcv:::rmvn can be used for generation 
  if (is.null(R)) R <- chol(V)
  z <- forwardsolve(t(R),x-mu)
  -sum(log(diag(R))) - log(2*pi)*length(mu)/2 - if (is.matrix(z)) colSums(z^2)/2 else sum(z^2)/2
}

## some functions to extract important components of joint density from
## fitted gam...

bSb <- function(b,beta=coef(b)) {
## evaluate penalty for fitted gam, possibly with new beta
  bSb <- k <-  0
  sp <- if (is.null(b$full.sp)) b$sp else b$full.sp ## handling linked sp's
  for (i in 1:length(b$smooth)) {
    m <- length(b$smooth[[i]]$S)
    if (m) {
      ii <- b$smooth[[i]]$first.para:b$smooth[[i]]$last.para
      for (j in 1:m) {
        k <- k + 1
        bSb <- bSb + sp[k]*(t(beta[ii])%*%b$smooth[[i]]$S[[j]]%*%beta[ii])
      }
    }  
  }
  bSb
} ## bSb

devg <- function(b,beta=coef(b),X=model.matrix(b)) {
## evaluate the deviance of a fitted gam given possibly new coefs, beta
## for general families this is simply -2*log.lik
  if (inherits(b$family,"general.family")) {
    -2*b$family$ll(b$y,X,beta,b$prior.weights,b$family,offset=b$offset)$l
  } else { ## exp or extended family
    sum(b$family$dev.resids(b$y,b$family$linkinv(X%*%beta+b$offset),b$prior.weights))
  }
} ## devg

lpl <- function(b,beta=coef(b),X=model.matrix(b)) {
## log joint density for beta, to within uninteresting constants
  -(devg(b,beta,X)/b$sig2+bSb(b,beta)/b$sig2)/2
}

gam.mh <- function(b,ns=10000,burn=1000,t.df=40,rw.scale=.25,thin=1) {
## generate posterior samples for fitted gam using Metroplois Hastings sampler
## alternating fixed proposal and random walk proposal, both based on Gaussian
## approximation to posterior...
  if (inherits(b,"bam")) stop("not usable with bam fits")
  beta <- coef(b);Vb <- vcov(b)
  X <- model.matrix(b); burn <- max(0,burn)
  prog <- interactive();iprog <- 0
  di <- floor((ns+burn)/100)
  if (prog) prg <- txtProgressBar(min = 0, max = ns+burn, initial = 0,
                   char = "=",width = NA, title="Progress", style = 3)
  bp <- rmvt(ns+burn,beta,Vb,df=t.df) ## beta proposals
  bp[1,] <- beta ## Don't change this after density step!!
  lfp <- dmvt(t(bp),beta,Vb,df=t.df) ## log proposal density

  rw <- is.finite(rw.scale)&&rw.scale>0
  if (rw) {
    R <- chol(Vb) 
    step <- rmvn(ns+burn,beta*0,Vb*rw.scale) ## random walk steps (mgcv::rmvn)
  }
  u <- runif(ns+burn);us <- runif(ns+burn) ## for acceptance check
  bs <- bp;j <- 1;accept <- rw.accept <- 0
  lpl0 <- lpl(b,bs[1,],X)
  for (i in 2:(ns+burn)) { ## MH loop
    ## first a static proposal...
    lpl1 <- lpl(b,bs[i,],X)
    if (u[i] < exp(lfp[j]-lfp[i]+lpl1-lpl0)) {
      lpl0 <- lpl1;accept <- accept + 1
      j <- i ## row of bs containing last accepted beta
    } else bs[i,] <- bs[i-1,]
    ## now a random walk proposal...
    if (rw) {
      lpl1 <- lpl(b,bs[i,]+step[i,],X)
      if (us[i] < exp(lpl1-lpl0)) { ## accept random walk step
        lpl0 <- lpl1;j <- i
        bs[i,] <- bs[i,] + step[i,]
	rw.accept <- rw.accept+1 
        lfp[i] <- dmvt(bs[i,],beta,Vb,df=t.df,R=R) ## have to update static proposal density
      }
    }  
    if (i==burn) accept <- rw.accept <- 0
    if (prog&&i%%di==0) setTxtProgressBar(prg, i)
  } ## MH loop
  if (burn>0) bs <- bs[-(1:burn),]
  if (thin>1) bs <- bs[seq(1,ns,by=thin),]
  if (prog) {
    setTxtProgressBar(prg, i);cat("\n")
    cat("fixed acceptance = ",accept/ns,"  RW acceptance = ",rw.accept/ns,"\n")
  }  
  list(bs=bs,rw.accept = rw.accept/ns,accept=accept/ns)
} ## gam.mh

Try the mgcv package in your browser

Any scripts or data that you put into this service are public.

mgcv documentation built on Oct. 6, 2021, 9:07 a.m.