View source: R/mice.impute.logreg.R
mice.impute.logreg | R Documentation |
Imputes univariate missing data using logistic regression.
mice.impute.logreg(y, ry, x, wy = NULL, ...)
y |
Vector to be imputed |
ry |
Logical vector of length |
x |
Numeric design matrix with |
wy |
Logical vector of length |
... |
Other named arguments. |
Imputation for binary response variables by the Bayesian logistic regression model (Rubin 1987, p. 169-170). The Bayesian method consists of the following steps:
Fit a logit, and find (bhat, V(bhat))
Draw BETA from N(bhat, V(bhat))
Compute predicted scores for m.d., i.e. logit-1(X BETA)
Compare the score to a random (0,1) deviate, and impute.
The method relies on the
standard glm.fit
function. Warnings from glm.fit
are
suppressed. Perfect prediction is handled by the data augmentation
method.
Vector with imputed data, same type as y
, and of length
sum(wy)
Stef van Buuren, Karin Groothuis-Oudshoorn
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice
:
Multivariate Imputation by Chained Equations in R
. Journal of
Statistical Software, 45(3), 1-67.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v045.i03")}
Brand, J.P.L. (1999). Development, Implementation and Evaluation of Multiple Imputation Strategies for the Statistical Analysis of Incomplete Data Sets. Ph.D. Thesis, TNO Prevention and Health/Erasmus University Rotterdam. ISBN 90-74479-08-1.
Venables, W.N. & Ripley, B.D. (1997). Modern applied statistics with S-Plus (2nd ed). Springer, Berlin.
White, I., Daniel, R. and Royston, P (2010). Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. Computational Statistics and Data Analysis, 54:22672275.
mice
, glm
, glm.fit
Other univariate imputation functions:
mice.impute.cart()
,
mice.impute.lasso.logreg()
,
mice.impute.lasso.norm()
,
mice.impute.lasso.select.logreg()
,
mice.impute.lasso.select.norm()
,
mice.impute.lda()
,
mice.impute.logreg.boot()
,
mice.impute.mean()
,
mice.impute.midastouch()
,
mice.impute.mnar.logreg()
,
mice.impute.mpmm()
,
mice.impute.norm.boot()
,
mice.impute.norm.nob()
,
mice.impute.norm.predict()
,
mice.impute.norm()
,
mice.impute.pmm()
,
mice.impute.polr()
,
mice.impute.polyreg()
,
mice.impute.quadratic()
,
mice.impute.rf()
,
mice.impute.ri()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.