mice.impute.mean: Imputation by the mean

Description Usage Arguments Value Warning References See Also

View source: R/mice.impute.mean.R

Description

Imputes the arithmetic mean of the observed data

Usage

1
mice.impute.mean(y, ry, x = NULL, wy = NULL, ...)

Arguments

y

Vector to be imputed

ry

Logical vector of length length(y) indicating the the subset y[ry] of elements in y to which the imputation model is fitted. The ry generally distinguishes the observed (TRUE) and missing values (FALSE) in y.

x

Numeric design matrix with length(y) rows with predictors for y. Matrix x may have no missing values.

wy

Logical vector of length length(y). A TRUE value indicates locations in y for which imputations are created.

...

Other named arguments.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Warning

Imputing the mean of a variable is almost never appropriate. See Little and Rubin (2002, p. 61-62) or Van Buuren (2012, p. 10-11)

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67. https://www.jstatsoft.org/v45/i03/

Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data. New York: John Wiley and Sons.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman & Hall/CRC. Boca Raton, FL.

See Also

mice, mean

Other univariate imputation functions: mice.impute.cart(), mice.impute.lda(), mice.impute.logreg.boot(), mice.impute.logreg(), mice.impute.midastouch(), mice.impute.mnar.logreg(), mice.impute.norm.boot(), mice.impute.norm.nob(), mice.impute.norm.predict(), mice.impute.norm(), mice.impute.pmm(), mice.impute.polr(), mice.impute.polyreg(), mice.impute.quadratic(), mice.impute.rf(), mice.impute.ri()


mice documentation built on Jan. 27, 2021, 5:10 p.m.

Related to mice.impute.mean in mice...