View source: R/mice.impute.norm.boot.R
| mice.impute.norm.boot | R Documentation | 
Imputes univariate missing data using linear regression with bootstrap
mice.impute.norm.boot(y, ry, x, wy = NULL, ...)
| y | Vector to be imputed | 
| ry | Logical vector of length  | 
| x | Numeric design matrix with  | 
| wy | Logical vector of length  | 
| ... | Other named arguments. | 
Draws a bootstrap sample from x[ry,] and y[ry], calculates
regression weights and imputes with normal residuals.
Vector with imputed data, same type as y, and of length
sum(wy)
Gerko Vink, Stef van Buuren, 2018
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice:
Multivariate Imputation by Chained Equations in R. Journal of
Statistical Software, 45(3), 1-67.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v045.i03")}
Other univariate imputation functions: 
mice.impute.cart(),
mice.impute.lasso.logreg(),
mice.impute.lasso.norm(),
mice.impute.lasso.select.logreg(),
mice.impute.lasso.select.norm(),
mice.impute.lda(),
mice.impute.logreg(),
mice.impute.logreg.boot(),
mice.impute.mean(),
mice.impute.midastouch(),
mice.impute.mnar.logreg(),
mice.impute.mpmm(),
mice.impute.norm(),
mice.impute.norm.nob(),
mice.impute.norm.predict(),
mice.impute.pmm(),
mice.impute.polr(),
mice.impute.polyreg(),
mice.impute.quadratic(),
mice.impute.rf(),
mice.impute.ri()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.