View source: R/mice.impute.passive.R
mice.impute.passive | R Documentation |
Calculate new variable during imputation
mice.impute.passive(data, func)
data |
A data frame |
func |
A |
Passive imputation is a special internal imputation function. Using this
facility, the user can specify, at any point in the mice
Gibbs
sampling algorithm, a function on the imputed data. This is useful, for
example, to compute a cubic version of a variable, a transformation like
Q = W/H^2
based on two variables, or a mean variable like
(x_1+x_2+x_3)/3
. The so derived variables might be used in other
places in the imputation model. The function allows to dynamically derive
virtually any function of the imputed data at virtually any time.
The result of applying formula
Stef van Buuren, Karin Groothuis-Oudshoorn, 2000
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice
:
Multivariate Imputation by Chained Equations in R
. Journal of
Statistical Software, 45(3), 1-67.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v045.i03")}
mice
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.