View source: R/mice.impute.polyreg.R
mice.impute.polyreg | R Documentation |
Imputes missing data in a categorical variable using polytomous regression
mice.impute.polyreg(
y,
ry,
x,
wy = NULL,
nnet.maxit = 100,
nnet.trace = FALSE,
nnet.MaxNWts = 1500,
...
)
y |
Vector to be imputed |
ry |
Logical vector of length |
x |
Numeric design matrix with |
wy |
Logical vector of length |
nnet.maxit |
Tuning parameter for |
nnet.trace |
Tuning parameter for |
nnet.MaxNWts |
Tuning parameter for |
... |
Other named arguments. |
The function mice.impute.polyreg()
imputes categorical response
variables by the Bayesian polytomous regression model. See J.P.L. Brand
(1999), Chapter 4, Appendix B.
By default, unordered factors with more than two levels are imputed by
mice.impute.polyreg()
.
The method consists of the following steps:
Fit categorical response as a multinomial model
Compute predicted categories
Add appropriate noise to predictions
The algorithm of mice.impute.polyreg
uses the function
multinom()
from the nnet
package.
In order to avoid bias due to perfect prediction, the algorithm augment the data according to the method of White, Daniel and Royston (2010).
Vector with imputed data, same type as y
, and of length
sum(wy)
Stef van Buuren, Karin Groothuis-Oudshoorn, 2000-2010
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice
: Multivariate
Imputation by Chained Equations in R
. Journal of Statistical
Software, 45(3), 1-67. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v045.i03")}
Brand, J.P.L. (1999) Development, implementation and evaluation of multiple imputation strategies for the statistical analysis of incomplete data sets. Dissertation. Rotterdam: Erasmus University.
White, I.R., Daniel, R. Royston, P. (2010). Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. Computational Statistics and Data Analysis, 54, 2267-2275.
Venables, W.N. & Ripley, B.D. (2002). Modern applied statistics with S-Plus (4th ed). Springer, Berlin.
mice
, multinom
,
polr
Other univariate imputation functions:
mice.impute.cart()
,
mice.impute.lasso.logreg()
,
mice.impute.lasso.norm()
,
mice.impute.lasso.select.logreg()
,
mice.impute.lasso.select.norm()
,
mice.impute.lda()
,
mice.impute.logreg.boot()
,
mice.impute.logreg()
,
mice.impute.mean()
,
mice.impute.midastouch()
,
mice.impute.mnar.logreg()
,
mice.impute.mpmm()
,
mice.impute.norm.boot()
,
mice.impute.norm.nob()
,
mice.impute.norm.predict()
,
mice.impute.norm()
,
mice.impute.pmm()
,
mice.impute.polr()
,
mice.impute.quadratic()
,
mice.impute.rf()
,
mice.impute.ri()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.