View source: R/mice.impute.ri.R
mice.impute.ri | R Documentation |
Imputes nonignorable missing data by the random indicator method.
mice.impute.ri(y, ry, x, wy = NULL, ri.maxit = 10, ...)
y |
Vector to be imputed |
ry |
Logical vector of length |
x |
Numeric design matrix with |
wy |
Logical vector of length |
ri.maxit |
Number of inner iterations |
... |
Other named arguments. |
The random indicator method estimates an offset between the distribution of the observed and missing data using an algorithm that iterates over the response and imputation models.
This routine assumes that the response model and imputation model have same predictors.
For an MNAR alternative see also mice.impute.mnar.logreg
.
Vector with imputed data, same type as y
, and of length
sum(wy)
Shahab Jolani (University of Utrecht)
Jolani, S. (2012). Dual Imputation Strategies for Analyzing Incomplete Data. Dissertation. University of Utrecht, Dec 7 2012.
Other univariate imputation functions:
mice.impute.cart()
,
mice.impute.lasso.logreg()
,
mice.impute.lasso.norm()
,
mice.impute.lasso.select.logreg()
,
mice.impute.lasso.select.norm()
,
mice.impute.lda()
,
mice.impute.logreg.boot()
,
mice.impute.logreg()
,
mice.impute.mean()
,
mice.impute.midastouch()
,
mice.impute.mnar.logreg()
,
mice.impute.mpmm()
,
mice.impute.norm.boot()
,
mice.impute.norm.nob()
,
mice.impute.norm.predict()
,
mice.impute.norm()
,
mice.impute.pmm()
,
mice.impute.polr()
,
mice.impute.polyreg()
,
mice.impute.quadratic()
,
mice.impute.rf()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.