| trans_alpha | R Documentation |
trans_alpha object for alpha diversity statistics and visualization.This class is a wrapper for a series of alpha diversity analysis, including the statistics and visualization.
new()trans_alpha$new( dataset = NULL, group = NULL, by_group = NULL, by_ID = NULL, order_x = NULL )
datasetmicrotable object.
groupdefault NULL; a column name of sample_table in the input microtable object used for the statistics across groups.
by_groupdefault NULL; a column name of sample_table used to perform the differential test
among groups (from group parameter) for each group (from by_group parameter) separately.
by_IDdefault NULL; a column name of sample_table used to perform paired T test or paired Wilcoxon test for the paired data,
such as continuous sampling of individual animals or plant compartments for different plant species (ID).
So by_ID in sample_table should be the smallest unit of sample collection without any repetition in it.
When the by_ID parameter is provided, the function can automatically perform paired test, and no more parameters is required.
order_xdefault NULL; a column name of sample_table or a vector with sample names. If provided, sort samples using factor.
data_alpha and data_stat stored in the object.
\donttest{
data(dataset)
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
}
cal_diff()Differential test on alpha diversity.
trans_alpha$cal_diff(
measure = NULL,
method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm",
"lme", "betareg", "glmm", "glmm_beta")[1],
formula = NULL,
p_adjust_method = "fdr",
KW_dunn_letter = TRUE,
alpha = 0.05,
anova_post_test = "duncan.test",
anova_varequal_test = FALSE,
return_model = FALSE,
...
)measuredefault NULL; character vector; If NULL, all indexes will be used; see names of microtable$alpha_diversity,
e.g. c("Observed", "Chao1", "Shannon").
methoddefault "KW"; see the following available options:
Kruskal-Wallis Rank Sum Test for all groups (>= 2)
Dunn's Kruskal-Wallis Multiple Comparisons <10.1080/00401706.1964.10490181> based on dunnTest function in FSA package
Wilcoxon Rank Sum Test for all paired groups
When by_ID parameter is provided in creating the object of the class, paired Wilcoxon test will be performed.
Student's t-Test for all paired groups.
When by_ID parameter is provided in creating the object of the class, paired t-test will be performed.
Variance analysis. For one-way anova, the default post hoc test is Duncan's new multiple range test.
Please use anova_post_test parameter to change the post hoc method.
For multi-way anova, Please use formula parameter to specify the model and see aov for more details
Scheirer-Ray-Hare test (nonparametric test) for a two-way factorial experiment;
see scheirerRayHare function of rcompanion package
Linear Model based on the lm function
Linear Mixed Effect Model based on the lmerTest package
Beta Regression for Rates and Proportions based on the betareg package
Generalized linear mixed model (GLMM) based on the glmmTMB package.
A family function can be provided using parameter passing, such as: family = glmmTMB::lognormal(link = "log")
Generalized linear mixed model (GLMM) with a family function of beta distribution.
This is an extension of the GLMM model in 'glmm' option.
The only difference is in glmm_beta the family function is fixed with the beta distribution function,
facilitating the fitting for proportional data (ranging from 0 to 1). The link function is fixed with "logit".
formuladefault NULL; applied to two-way or multi-factor analysis when
method is "anova", "scheirerRayHare", "lm", "lme", "betareg" or "glmm";
specified set for independent variables, i.e. the latter part of a general formula,
such as 'block + N*P*K'.
p_adjust_methoddefault "fdr" (for "KW", "wilcox", "t.test" methods) or "holm" (for "KW_dunn"); P value adjustment method;
For method = 'KW', 'wilcox' or 't.test', please see method parameter of p.adjust function for available options;
For method = 'KW_dunn', please see dunn.test::p.adjustment.methods for available options.
KW_dunn_letterdefault TRUE; For method = 'KW_dunn', TRUE denotes significances are presented by letters;
FALSE means significances are shown by asterisk for paired comparison.
alphadefault 0.05; Significant level; used for generating significance letters when method is 'anova' or 'KW_dunn'.
anova_post_testdefault "duncan.test". The post hoc test method for one-way anova.
The default option represents the Duncan's new multiple range test.
Other available options include "LSD.test" (LSD post hoc test) and "HSD.test" (HSD post hoc test).
All those are the function names from agricolae package.
anova_varequal_testdefault FALSE; whether conduct Levene's Test for equality of variances. Only available for one-way anova. Significant P value means the variance among groups is not equal.
return_modeldefault FALSE; whether return the original "lm", "lmer" or "glmm" model list in the object.
...parameters passed to kruskal.test (when method = "KW") or wilcox.test function (when method = "wilcox") or
dunnTest function of FSA package (when method = "KW_dunn") or
agricolae::duncan.test/agricolae::LSD.test/agricolae::HSD.test (when method = "anova", one-way anova) or
rcompanion::scheirerRayHare (when method = "scheirerRayHare") or
stats::lm (when method = "lm") or
lmerTest::lmer (when method = "lme") or
betareg::betareg (when method = "betareg") or
glmmTMB::glmmTMB (when method = "glmm").
res_diff, stored in object with the format data.frame.
When method is "betareg", "lm", "lme" or "glmm",
"Estimate" and "Std.Error" columns represent the fitted coefficient and its standard error, respectively.
\donttest{
t1$cal_diff(method = "KW")
t1$cal_diff(method = "anova")
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "anova")
}
plot_alpha()Plot the alpha diversity.
Box plot (and others for visualizing data in groups of single factor) is used for the visualization of alpha diversity when the group is found in the object.
When the formula is found in the res_diff table in the object,
heatmap is employed automatically to show the significances of differential test for multiple indexes,
and errorbar (coefficient and standard errors) can be used for single index.
trans_alpha$plot_alpha( plot_type = "ggboxplot", color_values = RColorBrewer::brewer.pal(8, "Dark2"), measure = "Shannon", group = NULL, add = NULL, add_sig = TRUE, add_sig_label = "Significance", add_sig_text_size = 3.88, add_sig_label_num_dec = 4, order_x_mean = FALSE, y_start = 0.1, y_increase = 0.05, xtext_angle = 30, xtext_size = 13, ytitle_size = 17, bar_width = 0.9, bar_alpha = 0.8, dodge_width = 0.9, plot_SE = TRUE, errorbar_size = 1, errorbar_width = 0.2, errorbar_addpoint = TRUE, errorbar_color_black = FALSE, point_size = 3, point_alpha = 0.8, add_line = FALSE, line_size = 0.8, line_type = 2, line_color = "grey50", line_alpha = 0.5, heatmap_cell = "P.unadj", heatmap_sig = "Significance", heatmap_x = "Factors", heatmap_y = "Measure", heatmap_lab_fill = "P value", coefplot_sig_pos = 2, ... )
plot_typedefault "ggboxplot"; plot type; available options include "ggboxplot", "ggdotplot", "ggviolin",
"ggstripchart", "ggerrorplot", "errorbar" and "barerrorbar".
The options starting with "gg" are function names coming from ggpubr package.
All those methods with ggpubr package use the data_alpha table in the object.
"errorbar" represents Mean±SD or Mean±SE plot based on ggplot2 package by invoking the data_stat table in the object.
"barerrorbar" denotes "bar plot + error bar". It is similar with "errorbar" and has a bar plot.
color_valuesdefault RColorBrewer::brewer.pal(8, "Dark2"); color pallete for groups.
measuredefault "Shannon"; one alpha diversity index in the object.
groupdefault NULL; group name used for the plot.
adddefault NULL; add another plot element; passed to the add parameter of the function (e.g., ggboxplot) from ggpubr package
when plot_type starts with "gg" (functions coming from ggpubr package).
add_sigdefault TRUE; whether add significance label using the result of cal_diff function, i.e. object$res_diff;
This is manily designed to add post hoc test of anova or other significances to make the label mapping easy.
add_sig_labeldefault "Significance"; select a colname of object$res_diff for the label text when 'Letter' is not in the table,
such as 'P.adj' or 'Significance'.
add_sig_text_sizedefault 3.88; the size of text in added label.
add_sig_label_num_decdefault 4; reserved decimal places when the parameter add_sig_label use numeric column, like 'P.adj'.
order_x_meandefault FALSE; whether order x axis by the means of groups from large to small.
y_startdefault 0.1; the y axis value from which to add the significance asterisk label;
the default 0.1 means max(values) + 0.1 * (max(values) - min(values)).
y_increasedefault 0.05; the increasing y axia space to add the label (asterisk or letter); the default 0.05 means 0.05 * (max(values) - min(values));
this parameter is also used to label the letters of anova result with the fixed space.
xtext_angledefault 30; number (e.g. 30). Angle of text in x axis.
xtext_sizedefault 13; x axis text size. NULL means the default size in ggplot2.
ytitle_sizedefault 17; y axis title size.
bar_widthdefault 0.9; the bar width when plot_type = "barerrorbar".
bar_alphadefault 0.8; the alpha of bar color when plot_type = "barerrorbar".
dodge_widthdefault 0.9; the dodge width used in position_dodge function of ggplot2 package when plot_type is "errorbar" or "barerrorbar".
plot_SEdefault TRUE; TRUE: the errorbar is mean±se; FALSE: the errorbar is mean±sd. Available when plot_type is "errorbar" or "barerrorbar".
errorbar_sizedefault 1; errorbar size. Available when plot_type is "errorbar" or "barerrorbar".
errorbar_widthdefault 0.2; errorbar width. Available when plot_type is "errorbar" or "barerrorbar" and by_group is NULL.
errorbar_addpointdefault TRUE; whether add point for mean. Available when plot_type is "errorbar" or "barerrorbar" and by_group is NULL.
errorbar_color_blackdefault FALSE; whether use black for the color of errorbar when plot_type is "errorbar" or "barerrorbar".
point_sizedefault 3; point size for taxa. Available when plot_type is "errorbar" or "barerrorbar".
point_alphadefault 0.8; point transparency. Available when plot_type is "errorbar" or "barerrorbar".
add_linedefault FALSE; whether add line. Available when plot_type is "errorbar" or "barerrorbar".
line_sizedefault 0.8; line size when add_line = TRUE. Available when plot_type is "errorbar" or "barerrorbar".
line_typedefault 2; an integer; line type when add_line = TRUE. The available case is same with line_size.
line_colordefault "grey50"; line color when add_line = TRUE. Available when by_group is NULL. Other available case is same with line_size.
line_alphadefault 0.5; line transparency when add_line = TRUE. The available case is same with line_size.
heatmap_celldefault "P.unadj"; the column of res_diff table for the cell of heatmap when formula with multiple factors is found in the method.
heatmap_sigdefault "Significance"; the column of res_diff for the significance label of heatmap.
heatmap_xdefault "Factors"; the column of res_diff for the x axis of heatmap.
heatmap_ydefault "Taxa"; the column of res_diff for the y axis of heatmap.
heatmap_lab_filldefault "P value"; legend title of heatmap.
coefplot_sig_posdefault 2; Significance label position in the coefficient point and errorbar plot.
The formula is Estimate + coefplot_sig_pos * Std.Error.
This plot is used when there is only one measure found in the table,
and 'Estimate' and 'Std.Error' are both in the column names (such as for lm and lme methods).
The x axis is 'Estimate', and y axis denotes 'Factors'.
When coefplot_sig_pos is a negative value, the label is in the left of the errorbar.
Errorbar size and width in the coefficient point plot can be adjusted with the parameters errorbar_size and errorbar_width.
Point size and alpha can be adjusted with parameters point_size and point_alpha.
The significance label size can be adjusted with parameter add_sig_text_size.
Furthermore, the vertical line around 0 can be adjusted with parameters line_size, line_type, line_color and line_alpha.
...parameters passing to ggpubr::ggboxplot function (or other functions shown by plot_type parameter when it starts with "gg") or
plot_cor function in trans_env class for the heatmap of multiple factors when formula is found in the res_diff of the object.
ggplot.
\donttest{
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
}
print()Print the trans_alpha object.
trans_alpha$print()
clone()The objects of this class are cloneable with this method.
trans_alpha$clone(deep = FALSE)
deepWhether to make a deep clone.
## ------------------------------------------------
## Method `trans_alpha$new`
## ------------------------------------------------
data(dataset)
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
## ------------------------------------------------
## Method `trans_alpha$cal_diff`
## ------------------------------------------------
t1$cal_diff(method = "KW")
t1$cal_diff(method = "anova")
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "anova")
## ------------------------------------------------
## Method `trans_alpha$plot_alpha`
## ------------------------------------------------
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.