trans_env: Create 'trans_env' object to analyze the association between...

trans_envR Documentation

Create trans_env object to analyze the association between environmental factor and microbial community.

Description

This class is a wrapper for a series of operations associated with environmental measurements, including redundancy analysis, mantel test, correlation analysis and linear fitting.

Methods

Public methods


Method new()

Usage
trans_env$new(
  dataset = NULL,
  env_cols = NULL,
  add_data = NULL,
  character2numeric = FALSE,
  standardize = FALSE,
  complete_na = FALSE
)
Arguments
dataset

the object of microtable Class.

env_cols

default NULL; either numeric vector or character vector to select columns in microtable$sample_table, i.e. dataset$sample_table. This parameter should be used in the case that all the required environmental data is in sample_table of your microtable object. Otherwise, please use add_data parameter.

add_data

default NULL; data.frame format; provide the environmental data in the format data.frame; rownames should be sample names. This parameter should be used when the microtable$sample_table object does not have environmental data. Under this circumstance, the env_cols parameter can not be used because no data can be selected.

character2numeric

default FALSE; whether convert the characters or factors to numeric values.

standardize

default FALSE; whether scale environmental variables to zero mean and unit variance.

complete_na

default FALSE; Whether fill the NA (missing value) in the environmental data; If TRUE, the function can run the interpolation with the mice package.

Returns

data_env stored in the object.

Examples
data(dataset)
data(env_data_16S)
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])

Method cal_diff()

Differential test of environmental variables across groups.

Usage
trans_env$cal_diff(
  group = NULL,
  by_group = NULL,
  method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm",
    "lme", "glmm")[1],
  ...
)
Arguments
group

default NULL; a colname of sample_table used to compare values across groups.

by_group

default NULL; perform differential test among groups (group parameter) within each group (by_group parameter).

method

default "KW"; see the following available options:

'KW'

KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)

'KW_dunn'

Dunn's Kruskal-Wallis Multiple Comparisons, see dunnTest function in FSA package

'wilcox'

Wilcoxon Rank Sum and Signed Rank Tests for all paired groups

't.test'

Student's t-Test for all paired groups

'anova'

Duncan's new multiple range test for one-way anova; see duncan.test function of agricolae package. For multi-factor anova, see aov

'scheirerRayHare'

Scheirer Ray Hare test for nonparametric test used for a two-way factorial experiment; see scheirerRayHare function of rcompanion package

'lm'

Linear model based on the lm function

'lme'

lme: Linear Mixed Effect Model based on the lmerTest package. The formula parameter should be provided.

'glmm'

Generalized linear mixed model (GLMM) based on the glmmTMB package. The formula and family parameters are needed. Please refer to glmmTMB package to select the family function, e.g. family = glmmTMB::lognormal(link = "log"). The usage of formula is similar with that in 'lme' method. For the details of return table, please refer to the help document of trans_diff class.

...

parameters passed to cal_diff function of trans_alpha class.

Returns

res_diff stored in the object. In the data frame, 'Group' column means that the group has the maximum median or mean value across the test groups; For non-parametric methods, median value; For t.test, mean value.

Examples
\donttest{
t1$cal_diff(group = "Group", method = "KW")
t1$cal_diff(group = "Group", method = "anova")
}

Method plot_diff()

Plot environmental variables across groups and add the significance label.

Usage
trans_env$plot_diff(...)
Arguments
...

parameters passed to plot_alpha in trans_alpha class. Please see plot_alpha function of trans_alpha for all the available parameters.


Method cal_autocor()

Calculate the autocorrelations among environmental variables.

Usage
trans_env$cal_autocor(
  group = NULL,
  ggpairs = TRUE,
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  alpha = 0.8,
  ...
)
Arguments
group

default NULL; a colname of sample_table; used to perform calculations for different groups.

ggpairs

default TRUE; whether use GGally::ggpairs function to plot the correlation results. If ggpairs = FALSE, the function will output a table with all the values instead of a graph. In this case, the function will call cal_cor to calculate autocorrelation instead of using the ggpairs function in GGally, so please use parameter passing to control more options.

color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette.

alpha

default 0.8; the alpha value to add transparency in colors; useful when group is not NULL.

...

parameters passed to GGally::ggpairs when ggpairs = TRUE or passed to cal_cor of trans_env class when ggpairs = FALSE.

Returns

ggmatrix when ggpairs = TRUE or data.frame object when ggpairs = FALSE.

Examples
\dontrun{
# Spearman correlation
t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman")))
}

Method cal_ordination()

Redundancy analysis (RDA) and Correspondence Analysis (CCA) based on the vegan package.

Usage
trans_env$cal_ordination(
  method = c("RDA", "dbRDA", "CCA")[1],
  feature_sel = FALSE,
  taxa_level = NULL,
  taxa_filter_thres = NULL,
  use_measure = NULL,
  add_matrix = NULL,
  ...
)
Arguments
method

default c("RDA", "dbRDA", "CCA")[1]; the ordination method.

feature_sel

default FALSE; whether perform the feature selection based on forward selection method.

taxa_level

default NULL; If use RDA or CCA, provide the taxonomic rank, such as "Phylum" or "Genus"; If use otu_table; please set taxa_level = "OTU".

taxa_filter_thres

default NULL; relative abundance threshold used to filter taxa when method is "RDA" or "CCA".

use_measure

default NULL; a name of beta diversity matrix; only available when parameter method = "dbRDA"; If not provided, use the first beta diversity matrix in the microtable$beta_diversity automatically.

add_matrix

default NULL; additional distance matrix provided, when the user does not want to use the beta diversity matrix within the dataset; only available when method = "dbRDA".

...

paremeters passed to dbrda, rda or cca function according to the method parameter.

Returns

res_ordination and res_ordination_R2 stored in the object.

Examples
\donttest{
t1$cal_ordination(method = "dbRDA", use_measure = "bray")
t1$cal_ordination(method = "RDA", taxa_level = "Genus")
t1$cal_ordination(method = "CCA", taxa_level = "Genus")
}

Method cal_ordination_anova()

Use anova to test the significance of the terms and axis in ordination.

Usage
trans_env$cal_ordination_anova(...)
Arguments
...

parameters passed to anova function.

Returns

res_ordination_terms and res_ordination_axis stored in the object.

Examples
\donttest{
t1$cal_ordination_anova()
}

Method cal_ordination_envfit()

Fit each environmental vector onto the ordination to obtain the contribution of each variable.

Usage
trans_env$cal_ordination_envfit(...)
Arguments
...

the parameters passed to vegan::envfit function.

Returns

res_ordination_envfit stored in the object.

Examples
\donttest{
t1$cal_ordination_envfit()
}

Method trans_ordination()

Transform ordination results for the following plot.

Usage
trans_env$trans_ordination(
  show_taxa = 10,
  adjust_arrow_length = FALSE,
  min_perc_env = 0.1,
  max_perc_env = 0.8,
  min_perc_tax = 0.1,
  max_perc_tax = 0.8
)
Arguments
show_taxa

default 10; taxa number shown in the plot.

adjust_arrow_length

default FALSE; whether adjust the arrow length to be clearer.

min_perc_env

default 0.1; used for scaling up the minimum of env arrow; multiply by the maximum distance between samples and origin.

max_perc_env

default 0.8; used for scaling up the maximum of env arrow; multiply by the maximum distance between samples and origin.

min_perc_tax

default 0.1; used for scaling up the minimum of tax arrow; multiply by the maximum distance between samples and origin.

max_perc_tax

default 0.8; used for scaling up the maximum of tax arrow; multiply by the maximum distance between samples and origin.

Returns

res_ordination_trans stored in the object.

Examples
\donttest{
t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1)
}

Method plot_ordination()

plot ordination result.

Usage
trans_env$plot_ordination(
  plot_color = NULL,
  plot_shape = NULL,
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14),
  env_text_color = "black",
  env_arrow_color = "grey30",
  taxa_text_color = "firebrick1",
  taxa_arrow_color = "firebrick1",
  env_text_size = 3.7,
  taxa_text_size = 3,
  taxa_text_italic = TRUE,
  plot_type = "point",
  point_size = 3,
  point_alpha = 0.8,
  centroid_segment_alpha = 0.6,
  centroid_segment_size = 1,
  centroid_segment_linetype = 3,
  ellipse_chull_fill = TRUE,
  ellipse_chull_alpha = 0.1,
  ellipse_level = 0.9,
  ellipse_type = "t",
  add_sample_label = NULL,
  env_nudge_x = NULL,
  env_nudge_y = NULL,
  taxa_nudge_x = NULL,
  taxa_nudge_y = NULL,
  ...
)
Arguments
plot_color

default NULL; a colname of sample_table to assign colors to different groups.

plot_shape

default NULL; a colname of sample_table to assign shapes to different groups.

color_values

default RColorBrewer::brewer.pal(8, "Dark2"); color pallete for different groups.

shape_values

default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector for point shape types of groups, see ggplot2 tutorial.

env_text_color

default "black"; environmental variable text color.

env_arrow_color

default "grey30"; environmental variable arrow color.

taxa_text_color

default "firebrick1"; taxa text color.

taxa_arrow_color

default "firebrick1"; taxa arrow color.

env_text_size

default 3.7; environmental variable text size.

taxa_text_size

default 3; taxa text size.

taxa_text_italic

default TRUE; "italic"; whether use "italic" style for the taxa text.

plot_type

default "point"; plotting type of samples; one or more elements of "point", "ellipse", "chull", "centroid" and "none"; "none" denotes nothing.

'point'

add point

'ellipse'

add confidence ellipse for points of each group

'chull'

add convex hull for points of each group

'centroid'

add centroid line of each group

point_size

default 3; point size in plot when "point" is in plot_type.

point_alpha

default .8; point transparency in plot when "point" is in plot_type.

centroid_segment_alpha

default 0.6; segment transparency in plot when "centroid" is in plot_type.

centroid_segment_size

default 1; segment size in plot when "centroid" is in plot_type.

centroid_segment_linetype

default 3; an integer; the line type related with centroid in plot when "centroid" is in plot_type.

ellipse_chull_fill

default TRUE; whether fill colors to the area of ellipse or chull.

ellipse_chull_alpha

default 0.1; color transparency in the ellipse or convex hull depending on whether "ellipse" or "centroid" is in plot_type.

ellipse_level

default .9; confidence level of ellipse when "ellipse" is in plot_type.

ellipse_type

default "t"; ellipse type when "ellipse" is in plot_type; see type parameter in stat_ellipse function of ggplot2 package.

add_sample_label

default NULL; the column name in sample table, if provided, show the point name in plot.

env_nudge_x

default NULL; numeric vector to adjust the env text x axis position; passed to nudge_x parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows. For example, if there are 5 env variables, env_nudge_x should be something like c(0.1, 0, -0.2, 0, 0). Note that this parameter and env_nudge_y is generally used when the automatic text adjustment is not very well.

env_nudge_y

default NULL; numeric vector to adjust the env text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows. For example, if there are 5 env variables, env_nudge_y should be something like c(0.1, 0, -0.2, 0, 0).

taxa_nudge_x

default NULL; numeric vector to adjust the taxa text x axis position; passed to nudge_x parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows_spe. For example, if 3 taxa are shown, taxa_nudge_x should be something like c(0.3, -0.2, 0).

taxa_nudge_y

default NULL; numeric vector to adjust the taxa text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows_spe. For example, if 3 taxa are shown, taxa_nudge_y should be something like c(-0.2, 0, 0.4).

...

paremeters passed to geom_point for controlling sample points.

Returns

ggplot object.

Examples
\donttest{
t1$cal_ordination(method = "RDA")
t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5)
t1$plot_ordination(plot_color = "Group")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), 
	  centroid_segment_linetype = 1)
t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0), 
	  env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2))
}

Method cal_mantel()

Mantel test between beta diversity matrix and environmental data.

Usage
trans_env$cal_mantel(
  partial_mantel = FALSE,
  add_matrix = NULL,
  use_measure = NULL,
  method = "pearson",
  p_adjust_method = "fdr",
  by_group = NULL,
  ...
)
Arguments
partial_mantel

default FALSE; whether use partial mantel test; If TRUE, use other all measurements as the zdis in each calculation.

add_matrix

default NULL; additional distance matrix provided when the beta diversity matrix in the dataset is not used.

use_measure

default NULL; a name of beta diversity matrix. If necessary and not provided, use the first beta diversity matrix.

method

default "pearson"; one of "pearson", "spearman" and "kendall"; correlation method; see method parameter in vegan::mantel function.

p_adjust_method

default "fdr"; p.adjust method; see method parameter of p.adjust function for available options.

by_group

default NULL; one column name or number in sample_table; used to perform mantel test for different groups separately.

...

paremeters passed to mantel of vegan package.

Returns

res_mantel in object.

Examples
\donttest{
t1$cal_mantel(use_measure = "bray")
t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray")
}

Method cal_cor()

Calculate the correlations between taxonomic abundance and environmental variables. Actually, it can also be applied to other correlation between any two variables from two tables.

Usage
trans_env$cal_cor(
  use_data = c("Genus", "all", "other")[1],
  cor_method = c("pearson", "spearman", "kendall", "maaslin2")[1],
  partial = FALSE,
  partial_fix = NULL,
  add_abund_table = NULL,
  filter_thres = 0,
  use_taxa_num = NULL,
  other_taxa = NULL,
  p_adjust_method = "fdr",
  p_adjust_type = c("All", "Taxa", "Env")[1],
  by_group = NULL,
  group_use = NULL,
  group_select = NULL,
  taxa_name_full = TRUE,
  tmp_input_maaslin2 = "tmp_input",
  tmp_output_maaslin2 = "tmp_output",
  ...
)
Arguments
use_data

default "Genus"; "Genus", "all" or "other"; "Genus" or other taxonomic names (e.g., "Phylum", "ASV"): invoke taxonomic abundance table in taxa_abund list of the microtable object; "all": merge all the taxonomic abundance tables in taxa_abund list into one; "other": provide additional taxa names by assigning other_taxa parameter.

cor_method

default "pearson"; "pearson", "spearman", "kendall" or "maaslin2"; correlation method. "pearson", "spearman" or "kendall" all refer to the correlation analysis based on the cor.test function in R. "maaslin2" is the method in Maaslin2 package for finding associations between metadata and potentially high-dimensional microbial multi-omics data.

partial

default FALSE; whether perform partial correlation based on the ppcor package.

partial_fix

default NULL; selected environmental variable names used as third group of variables in all the partial correlations. If NULL; all the variables (except the one for correlation) in the environmental data will be used as the third group of variables. Otherwise, the function will control for the provided variables (one or more) in all the partial correlations, and the variables in partial_fix will not be employed anymore in the correlation analysis.

add_abund_table

default NULL; additional data table to be used. Row names must be sample names.

filter_thres

default 0; the abundance threshold, such as 0.0005 when the input is relative abundance. The features with abundances lower than filter_thres will be filtered. This parameter cannot be applied when add_abund_table parameter is provided.

use_taxa_num

default NULL; integer; a number used to select high abundant taxa; only useful when use_data parameter is a taxonomic level, e.g., "Genus".

other_taxa

default NULL; character vector containing a series of feature names; available when use_data = "other"; provided names should be standard full names used to select taxa from all the tables in taxa_abund list of the microtable object; please refer to the example.

p_adjust_method

default "fdr"; p.adjust method; see method parameter of p.adjust function for available options. p_adjust_method = "none" can disable the p value adjustment.

p_adjust_type

default "All"; "All", "Taxa" or "Env"; P value adjustment type. "Env": adjustment for each environmental variable separately; "Taxa": adjustment for each taxon separately; "All": adjustment for all the data together no matter whether by_group is provided.

by_group

default NULL; one column name or number in sample_table; calculate correlations for different groups separately.

group_use

default NULL; numeric or character vector to select one column in sample_table for selecting samples; together with group_select.

group_select

default NULL; the group name used; remain samples within the group.

taxa_name_full

default TRUE; Whether use the complete taxonomic name of taxa.

tmp_input_maaslin2

default "tmp_input"; the temporary folder used to save the input files for Maaslin2.

tmp_output_maaslin2

default "tmp_output"; the temporary folder used to save the output files of Maaslin2.

...

parameters passed to Maaslin2 function of Maaslin2 package.

Returns

res_cor stored in the object.

Examples
\donttest{
t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40])
}

Method plot_cor()

Plot correlation heatmap.

Usage
trans_env$plot_cor(
  color_vector = c("#053061", "white", "#A50026"),
  color_palette = NULL,
  pheatmap = FALSE,
  filter_feature = NULL,
  filter_env = NULL,
  ylab_type_italic = FALSE,
  keep_full_name = FALSE,
  keep_prefix = TRUE,
  text_y_order = NULL,
  text_x_order = NULL,
  xtext_angle = 30,
  xtext_size = 10,
  xtext_color = "black",
  ytext_size = NULL,
  ytext_color = "black",
  sig_label_size = 4,
  font_family = NULL,
  cluster_ggplot = "none",
  cluster_height_rows = 0.2,
  cluster_height_cols = 0.2,
  text_y_position = "right",
  mylabels_x = NULL,
  na.value = "grey50",
  trans = "identity",
  ...
)
Arguments
color_vector

default c("#053061", "white", "#A50026"); colors with only three values representing low, middle and high values.

color_palette

default NULL; a customized palette with more color values to be used instead of the parameter color_vector.

pheatmap

default FALSE; whether use pheatmap package to plot the heatmap.

filter_feature

default NULL; character vector; used to filter features that only have labels in the filter_feature vector. For example, filter_feature = "" can be used to remove features that only have "", no any "*".

filter_env

default NULL; character vector; used to filter environmental variables that only have labels in the filter_env vector. For example, filter_env = "" can be used to remove features that only have "", no any "*".

ylab_type_italic

default FALSE; whether use italic type for y lab text.

keep_full_name

default FALSE; whether use the complete taxonomic name.

keep_prefix

default TRUE; whether retain the taxonomic prefix.

text_y_order

default NULL; character vector; provide customized text order for y axis; shown in the plot from the top down.

text_x_order

default NULL; character vector; provide customized text order for x axis.

xtext_angle

default 30; number ranging from 0 to 90; used to adjust x axis text angle.

xtext_size

default 10; x axis text size.

xtext_color

default "black"; x axis text color.

ytext_size

default NULL; y axis text size. NULL means default ggplot2 value.

ytext_color

default "black"; y axis text color.

sig_label_size

default 4; the size of significance label shown in the cell.

font_family

default NULL; font family used in ggplot2; only available when pheatmap = FALSE.

cluster_ggplot

default "none"; add clustering dendrogram for ggplot2 based heatmap. Available options: "none", "row", "col" or "both". "none": no any clustering used; "row": add clustering for rows; "col": add clustering for columns; "both": add clustering for both rows and columns. Only available when pheatmap = FALSE.

cluster_height_rows

default 0.2, the dendrogram plot height for rows; available when cluster_ggplot is not "none".

cluster_height_cols

default 0.2, the dendrogram plot height for columns; available when cluster_ggplot is not "none".

text_y_position

default "right"; "left" or "right"; the y axis text position for ggplot2 based heatmap.

mylabels_x

default NULL; provide x axis text labels additionally; only available when pheatmap = TRUE.

na.value

default "grey50"; the color for the missing values when pheatmap = FALSE.

trans

default "identity"; the transformation for continuous scales in the legend when pheatmap = FALSE; see the trans item in ggplot2::scale_colour_gradientn.

...

paremeters passed to ggplot2::geom_tile or pheatmap::pheatmap, depending on the parameter pheatmap is FALSE or TRUE.

Returns

plot.

Examples
\donttest{
t1$plot_cor(pheatmap = FALSE)
}

Method plot_scatterfit()

Scatter plot with fitted line based on the correlation or regression.
The most important thing is to make sure that the input x and y have correponding sample orders. If one of x and y is a matrix, the other will be also transformed to matrix with Euclidean distance. Then, both of them are transformed to be vectors. If x or y is a vector with a single value, x or y will be assigned according to the column selection of the data_env in the object.

Usage
trans_env$plot_scatterfit(
  x = NULL,
  y = NULL,
  group = NULL,
  group_order = NULL,
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  shape_values = NULL,
  type = c("cor", "lm")[1],
  cor_method = "pearson",
  label_sep = ";",
  label.x.npc = "left",
  label.y.npc = "top",
  label.x = NULL,
  label.y = NULL,
  x_axis_title = "",
  y_axis_title = "",
  point_size = 5,
  point_alpha = 0.6,
  line_size = 0.8,
  line_color = "black",
  line_se = TRUE,
  line_se_color = "grey70",
  line_alpha = 0.5,
  pvalue_trim = 4,
  cor_coef_trim = 3,
  lm_equation = TRUE,
  lm_fir_trim = 2,
  lm_sec_trim = 2,
  lm_squ_trim = 2,
  ...
)
Arguments
x

default NULL; a single numeric or character value, a vector, or a distance matrix used for the x axis. If x is a single value, it will be used to select the column of data_env in the object. If x is a distance matrix, it will be transformed to be a vector.

y

default NULL; a single numeric or character value, a vector, or a distance matrix used for the y axis. If y is a single value, it will be used to select the column of data_env in the object. If y is a distance matrix, it will be transformed to be a vector.

group

default NULL; a character vector; if length is 1, must be a colname of sample_table in the input dataset; Otherwise, group should be a vector having same length with x/y (for vector) or column number of x/y (for matrix).

group_order

default NULL; a vector used to order groups, i.e. reorder the legend and colors in plot when group is not NULL; If group_order is NULL and group is provided, the function can first check whether the group column of sample_table is factor. If group_order is provided, disable the group orders or factor levels in the group column of sample_table.

color_values

default RColorBrewer::brewer.pal(8, "Dark2"); color pallete for different groups.

shape_values

default NULL; a numeric vector for point shape types of groups when group is not NULL, see ggplot2 tutorial.

type

default c("cor", "lm")[1]; "cor": correlation; "lm" for regression.

cor_method

default "pearson"; one of "pearson", "kendall" and "spearman"; correlation method.

label_sep

default ";"; the separator string between different label parts.

label.x.npc

default "left"; can be numeric or character vector of the same length as the number of groups and/or panels. If too short, they will be recycled.

numeric

value should be between 0 and 1. Coordinates to be used for positioning the label, expressed in "normalized parent coordinates"

character

allowed values include: i) one of c('right', 'left', 'center', 'centre', 'middle') for x-axis; ii) and one of c( 'bottom', 'top', 'center', 'centre', 'middle') for y-axis.

label.y.npc

default "top"; same usage with label.x.npc; also see label.y.npc parameter of ggpubr::stat_cor function.

label.x

default NULL; x axis absolute position for adding the statistic label.

label.y

default NULL; x axis absolute position for adding the statistic label.

x_axis_title

default ""; the title of x axis.

y_axis_title

default ""; the title of y axis.

point_size

default 5; point size value.

point_alpha

default 0.6; alpha value for the point color transparency.

line_size

default 0.8; line size value.

line_color

default "black"; fitted line color; only available when group = NULL.

line_se

default TRUE; Whether show the confidence interval for the fitting.

line_se_color

default "grey70"; the color to fill the confidence interval when line_se = TRUE.

line_alpha

default 0.5; alpha value for the color transparency of line confidence interval.

pvalue_trim

default 4; trim the decimal places of p value.

cor_coef_trim

default 3; trim the decimal places of correlation coefficient.

lm_equation

default TRUE; whether include the equation in the label when type = "lm".

lm_fir_trim

default 2; trim the decimal places of first coefficient in regression.

lm_sec_trim

default 2; trim the decimal places of second coefficient in regression.

lm_squ_trim

default 2; trim the decimal places of R square in regression.

...

other arguments passed to geom_text or geom_label.

Returns

ggplot.

Examples
\donttest{
t1$plot_scatterfit(x = 1, y = 2, type = "cor")
t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3)
t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE)
t1$plot_scatterfit(x = 
	 dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")
}

Method print()

Print the trans_env object.

Usage
trans_env$print()

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_env$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples


## ------------------------------------------------
## Method `trans_env$new`
## ------------------------------------------------

data(dataset)
data(env_data_16S)
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])

## ------------------------------------------------
## Method `trans_env$cal_diff`
## ------------------------------------------------


t1$cal_diff(group = "Group", method = "KW")
t1$cal_diff(group = "Group", method = "anova")


## ------------------------------------------------
## Method `trans_env$cal_autocor`
## ------------------------------------------------

## Not run: 
# Spearman correlation
t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman")))

## End(Not run)

## ------------------------------------------------
## Method `trans_env$cal_ordination`
## ------------------------------------------------


t1$cal_ordination(method = "dbRDA", use_measure = "bray")
t1$cal_ordination(method = "RDA", taxa_level = "Genus")
t1$cal_ordination(method = "CCA", taxa_level = "Genus")


## ------------------------------------------------
## Method `trans_env$cal_ordination_anova`
## ------------------------------------------------


t1$cal_ordination_anova()


## ------------------------------------------------
## Method `trans_env$cal_ordination_envfit`
## ------------------------------------------------


t1$cal_ordination_envfit()


## ------------------------------------------------
## Method `trans_env$trans_ordination`
## ------------------------------------------------


t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1)


## ------------------------------------------------
## Method `trans_env$plot_ordination`
## ------------------------------------------------


t1$cal_ordination(method = "RDA")
t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5)
t1$plot_ordination(plot_color = "Group")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), 
	  centroid_segment_linetype = 1)
t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0), 
	  env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2))


## ------------------------------------------------
## Method `trans_env$cal_mantel`
## ------------------------------------------------


t1$cal_mantel(use_measure = "bray")
t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray")


## ------------------------------------------------
## Method `trans_env$cal_cor`
## ------------------------------------------------


t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40])


## ------------------------------------------------
## Method `trans_env$plot_cor`
## ------------------------------------------------


t1$plot_cor(pheatmap = FALSE)


## ------------------------------------------------
## Method `trans_env$plot_scatterfit`
## ------------------------------------------------


t1$plot_scatterfit(x = 1, y = 2, type = "cor")
t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3)
t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE)
t1$plot_scatterfit(x = 
	 dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")


microeco documentation built on Oct. 30, 2024, 9:12 a.m.

Related to trans_env in microeco...