| trans_env | R Documentation |
trans_env object to analyze the association between environmental factor and microbial community.This class is a wrapper for a series of operations associated with environmental measurements, including redundancy analysis, mantel test, correlation analysis and linear fitting.
new()trans_env$new( dataset = NULL, env_cols = NULL, add_data = NULL, character2numeric = FALSE, standardize = FALSE, complete_na = FALSE )
datasetthe object of microtable Class.
env_colsdefault NULL; either numeric vector or character vector to select columns in microtable$sample_table, i.e. dataset$sample_table.
This parameter should be used in the case that all the required environmental data is in sample_table of your microtable object.
Otherwise, please use add_data parameter.
add_datadefault NULL; data.frame format; provide the environmental data in the format data.frame; rownames should be sample names.
This parameter should be used when the microtable$sample_table object does not have environmental data.
Under this circumstance, the env_cols parameter can not be used because no data can be selected.
character2numericdefault FALSE; whether convert all the character or factor columns to numeric type using the dropallfactors function.
If TRUE, character columns will first be attempted to convert to numeric. If that fails, they will be converted to the factor type and then to numeric.
standardizedefault FALSE; whether scale environmental variables to zero mean and unit variance.
complete_nadefault FALSE; Whether fill the NA (missing value) in the environmental data;
If TRUE, the function can run the interpolation with the mice package.
data_env stored in the object.
data(dataset) data(env_data_16S) t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
cal_diff()Differential test of environmental variables across groups.
trans_env$cal_diff(
group = NULL,
by_group = NULL,
method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm",
"lme", "glmm")[1],
...
)groupdefault NULL; a colname of sample_table used to compare values across groups.
by_groupdefault NULL; perform differential test among groups (group parameter) within each group (by_group parameter).
methoddefault "KW"; see the following available options:
KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)
Dunn's Kruskal-Wallis Multiple Comparisons, see dunnTest function in FSA package
Wilcoxon Rank Sum and Signed Rank Tests for all paired groups
Student's t-Test for all paired groups
Duncan's new multiple range test for one-way anova; see duncan.test function of agricolae package.
For multi-factor anova, see aov
Scheirer Ray Hare test for nonparametric test used for a two-way factorial experiment;
see scheirerRayHare function of rcompanion package
Linear model based on the lm function
lme: Linear Mixed Effect Model based on the lmerTest package.
The formula parameter should be provided.
Generalized linear mixed model (GLMM) based on the glmmTMB package.
The formula and family parameters are needed.
Please refer to glmmTMB package to select the family function, e.g. family = glmmTMB::lognormal(link = "log").
The usage of formula is similar with that in 'lme' method.
For the details of return table, please refer to the help document of trans_diff class.
...parameters passed to cal_diff function of trans_alpha class.
res_diff stored in the object.
In the data frame, 'Group' column means that the group has the maximum median or mean value across the test groups;
For non-parametric methods, median value; For t.test, mean value.
\donttest{
t1$cal_diff(group = "Group", method = "KW")
t1$cal_diff(group = "Group", method = "anova")
}
plot_diff()Plot environmental variables across groups and add the significance label.
trans_env$plot_diff(...)
...parameters passed to plot_alpha in trans_alpha class.
Please see plot_alpha function of trans_alpha for all the available parameters.
cal_autocor()Calculate the autocorrelations among environmental variables.
trans_env$cal_autocor( group = NULL, ggpairs = TRUE, color_values = RColorBrewer::brewer.pal(8, "Dark2"), alpha = 0.8, ... )
groupdefault NULL; a colname of sample_table; used to perform calculations for different groups.
ggpairsdefault TRUE; whether use GGally::ggpairs function to plot the correlation results.
If ggpairs = FALSE, the function will output a table with all the values instead of a graph.
In this case, the function will call cal_cor to calculate autocorrelation instead of using the ggpairs function in GGally,
so please use parameter passing to control more options.
color_valuesdefault RColorBrewer::brewer.pal(8, "Dark2"); colors palette.
alphadefault 0.8; the alpha value to add transparency in colors; useful when group is not NULL.
...parameters passed to GGally::ggpairs when ggpairs = TRUE or
passed to cal_cor of trans_env class when ggpairs = FALSE.
ggmatrix when ggpairs = TRUE or data.frame object when ggpairs = FALSE.
\dontrun{
# Spearman correlation
t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman")))
}
cal_ordination()Redundancy analysis (RDA) and Correspondence Analysis (CCA) based on the vegan package.
trans_env$cal_ordination(
method = c("RDA", "dbRDA", "CCA")[1],
feature_sel = FALSE,
taxa_level = NULL,
taxa_filter_thres = NULL,
use_measure = NULL,
add_matrix = NULL,
...
)methoddefault c("RDA", "dbRDA", "CCA")[1]; the ordination method.
feature_seldefault FALSE; whether perform the feature selection based on forward selection method.
taxa_leveldefault NULL; the taxonomic level used in RDA or CCA.
Default NULL means using the merged data at "Genus" level. "ASV" or "OTU" can also be provided for the use of otu_table in microtable object.
taxa_filter_thresdefault NULL; relative abundance threshold used to filter taxa when method is "RDA" or "CCA".
use_measuredefault NULL; a name of beta diversity matrix; only available when parameter method = "dbRDA";
If not provided, use the first beta diversity matrix in the microtable$beta_diversity automatically.
add_matrixdefault NULL; additional distance matrix provided, when the user does not want to use the beta diversity matrix within the dataset; only available when method = "dbRDA".
...paremeters passed to dbrda, rda or cca function according to the method parameter.
res_ordination and res_ordination_R2 stored in the object.
\donttest{
t1$cal_ordination(method = "dbRDA", use_measure = "bray")
t1$cal_ordination(method = "RDA", taxa_level = "Genus")
t1$cal_ordination(method = "CCA", taxa_level = "Genus")
}
cal_ordination_anova()Use anova to test the significance of the terms and axis in ordination.
trans_env$cal_ordination_anova(...)
...parameters passed to anova function.
res_ordination_terms and res_ordination_axis stored in the object.
\donttest{
t1$cal_ordination_anova()
}
cal_ordination_envfit()Fit each environmental vector onto the ordination to obtain the contribution of each variable.
trans_env$cal_ordination_envfit(...)
...the parameters passed to vegan::envfit function.
res_ordination_envfit stored in the object.
\donttest{
t1$cal_ordination_envfit()
}
trans_ordination()Transform ordination results for the following plot.
trans_env$trans_ordination( show_taxa = 10, adjust_arrow_length = FALSE, min_perc_env = 0.1, max_perc_env = 0.8, min_perc_tax = 0.1, max_perc_tax = 0.8 )
show_taxadefault 10; taxa number shown in the plot.
adjust_arrow_lengthdefault FALSE; whether adjust the arrow length to be clearer.
min_perc_envdefault 0.1; used for scaling up the minimum of env arrow; multiply by the maximum distance between samples and origin.
max_perc_envdefault 0.8; used for scaling up the maximum of env arrow; multiply by the maximum distance between samples and origin.
min_perc_taxdefault 0.1; used for scaling up the minimum of tax arrow; multiply by the maximum distance between samples and origin.
max_perc_taxdefault 0.8; used for scaling up the maximum of tax arrow; multiply by the maximum distance between samples and origin.
res_ordination_trans stored in the object.
\donttest{
t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1)
}
plot_ordination()plot ordination result.
trans_env$plot_ordination( plot_color = NULL, plot_shape = NULL, color_values = RColorBrewer::brewer.pal(8, "Dark2"), shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14), env_text_color = "black", env_arrow_color = "grey30", taxa_text_color = "firebrick1", taxa_arrow_color = "firebrick1", env_text_size = 3.7, taxa_text_size = 3, taxa_text_prefix = FALSE, taxa_text_italic = TRUE, plot_type = "point", point_size = 3, point_alpha = 0.8, centroid_segment_alpha = 0.6, centroid_segment_size = 1, centroid_segment_linetype = 3, ellipse_chull_fill = TRUE, ellipse_chull_alpha = 0.1, ellipse_level = 0.9, ellipse_type = "t", add_sample_label = NULL, env_nudge_x = NULL, env_nudge_y = NULL, taxa_nudge_x = NULL, taxa_nudge_y = NULL, ... )
plot_colordefault NULL; a colname of sample_table to assign colors to different groups.
plot_shapedefault NULL; a colname of sample_table to assign shapes to different groups.
color_valuesdefault RColorBrewer::brewer.pal(8, "Dark2"); color pallete for different groups.
shape_valuesdefault c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector for point shape types of groups, see ggplot2 tutorial.
env_text_colordefault "black"; environmental variable text color.
env_arrow_colordefault "grey30"; environmental variable arrow color.
taxa_text_colordefault "firebrick1"; taxa text color.
taxa_arrow_colordefault "firebrick1"; taxa arrow color.
env_text_sizedefault 3.7; environmental variable text size.
taxa_text_sizedefault 3; taxa text size.
taxa_text_prefixdefault FALSE; whether show the prefix (e.g., g__) of taxonomic information in the text.
taxa_text_italicdefault TRUE; "italic"; whether use "italic" style for the taxa text.
plot_typedefault "point"; plotting type of samples; one or more elements of "point", "ellipse", "chull", "centroid" and "none"; "none" denotes nothing.
add point
add confidence ellipse for points of each group
add convex hull for points of each group
add centroid line of each group
point_sizedefault 3; point size in plot when "point" is in plot_type.
point_size can also be a variable name in sample_table, such as "pH".
point_alphadefault .8; point transparency in plot when "point" is in plot_type.
centroid_segment_alphadefault 0.6; segment transparency in plot when "centroid" is in plot_type.
centroid_segment_sizedefault 1; segment size in plot when "centroid" is in plot_type.
centroid_segment_linetypedefault 3; an integer; the line type related with centroid in plot when "centroid" is in plot_type.
ellipse_chull_filldefault TRUE; whether fill colors to the area of ellipse or chull.
ellipse_chull_alphadefault 0.1; color transparency in the ellipse or convex hull depending on whether "ellipse" or "centroid" is in plot_type.
ellipse_leveldefault .9; confidence level of ellipse when "ellipse" is in plot_type.
ellipse_typedefault "t"; ellipse type when "ellipse" is in plot_type; see type parameter in stat_ellipse function of ggplot2 package.
add_sample_labeldefault NULL; the column name in sample table, if provided, show the point name in plot.
env_nudge_xdefault NULL; numeric vector to adjust the env text x axis position; passed to nudge_x parameter of ggrepel::geom_text_repel function;
default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows. For example,
if there are 5 env variables, env_nudge_x should be something like c(0.1, 0, -0.2, 0, 0).
Note that this parameter and env_nudge_y is generally used when the automatic text adjustment is not very well.
env_nudge_ydefault NULL; numeric vector to adjust the env text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function;
default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows. For example,
if there are 5 env variables, env_nudge_y should be something like c(0.1, 0, -0.2, 0, 0).
taxa_nudge_xdefault NULL; numeric vector to adjust the taxa text x axis position; passed to nudge_x parameter of ggrepel::geom_text_repel function;
default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows_spe. For example,
if 3 taxa are shown, taxa_nudge_x should be something like c(0.3, -0.2, 0).
taxa_nudge_ydefault NULL; numeric vector to adjust the taxa text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function;
default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows_spe. For example,
if 3 taxa are shown, taxa_nudge_y should be something like c(-0.2, 0, 0.4).
...paremeters passed to geom_point for controlling sample points.
ggplot object.
\donttest{
t1$cal_ordination(method = "RDA")
t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5)
t1$plot_ordination(plot_color = "Group")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"),
centroid_segment_linetype = 1)
t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0),
env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2))
}
cal_mantel()Mantel test between beta diversity matrix and environmental data.
trans_env$cal_mantel( partial_mantel = FALSE, add_matrix = NULL, use_measure = NULL, method = "pearson", p_adjust_method = "fdr", by_group = NULL, ... )
partial_manteldefault FALSE; whether use partial mantel test; If TRUE, use other all measurements as the zdis in each calculation.
add_matrixdefault NULL; additional distance matrix provided when the beta diversity matrix in the dataset is not used.
use_measuredefault NULL; a name of beta diversity matrix. If necessary and not provided, use the first beta diversity matrix.
methoddefault "pearson"; one of "pearson", "spearman" and "kendall"; correlation method; see method parameter in vegan::mantel function.
p_adjust_methoddefault "fdr"; p.adjust method; see method parameter of p.adjust function for available options.
by_groupdefault NULL; one column name or number in sample_table; used to perform mantel test for different groups separately.
...paremeters passed to mantel of vegan package.
res_mantel in object.
\donttest{
t1$cal_mantel(use_measure = "bray")
t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray")
}
cal_cor()Calculate the correlations between taxonomic abundance and environmental variables. Actually, it can also be applied to other correlation between any two variables from two tables.
trans_env$cal_cor(
use_data = c("Genus", "all", "other")[1],
method = c("pearson", "spearman", "kendall", "maaslin2")[1],
partial = FALSE,
partial_fix = NULL,
add_abund_table = NULL,
filter_thres = 0,
use_taxa_num = NULL,
other_taxa = NULL,
p_adjust_method = "fdr",
p_adjust_type = c("All", "Taxa", "Env")[1],
by_group = NULL,
group_use = NULL,
group_select = NULL,
taxa_name_full = TRUE,
tmp_input_maaslin2 = "tmp_input",
tmp_output_maaslin2 = "tmp_output",
cor_method = deprecated(),
...
)use_datadefault "Genus"; "Genus", "all" or "other";
"Genus" or other taxonomic names (e.g., "Phylum", "ASV"): invoke taxonomic abundance table in taxa_abund list of the microtable object;
"all": merge all the taxonomic abundance tables in taxa_abund list into one; "other": provide additional taxa names by assigning other_taxa parameter.
methoddefault "pearson"; "pearson", "spearman", "kendall" or "maaslin2"; correlation method.
"pearson", "spearman" or "kendall" all refer to the correlation analysis based on the cor.test function in R.
"maaslin2" is the method in Maaslin2 package for finding associations between metadata and potentially high-dimensional microbial multi-omics data.
partialdefault FALSE; whether perform partial correlation based on the ppcor package.
Available when method is "pearson", "spearman" or "kendall".
partial_fixdefault NULL; selected environmental variable names used as third group of variables in all the partial correlations.
If NULL; all the variables (except the one for correlation) in the environmental data will be used as the third group of variables.
Otherwise, the function will control for the provided variables (one or more) in all the partial correlations,
and the variables in partial_fix will not be employed anymore in the correlation analysis.
add_abund_tabledefault NULL; additional data table to be used. Row names must be sample names.
filter_thresdefault 0; the abundance threshold, such as 0.0005 when the input is relative abundance. The features with abundances lower than filter_thres will be filtered. This parameter cannot be applied when add_abund_table parameter is provided.
use_taxa_numdefault NULL; integer; a number used to select high abundant taxa; only useful when use_data parameter is a taxonomic level, e.g., "Genus".
other_taxadefault NULL; character vector containing a series of feature names; available when use_data = "other";
provided names should be standard full names used to select taxa from all the tables in taxa_abund list of the microtable object;
please refer to the example.
p_adjust_methoddefault "fdr"; p.adjust method; see method parameter of p.adjust function for available options.
p_adjust_method = "none" can disable the p value adjustment.
p_adjust_typedefault "All"; "All", "Taxa" or "Env"; P value adjustment type.
"Env": adjustment for each environmental variable separately;
"Taxa": adjustment for each taxon separately;
"All": adjustment for all the data together no matter whether by_group is provided.
by_groupdefault NULL; one column name or number in sample_table; calculate correlations for different groups separately.
group_usedefault NULL; numeric or character vector to select one column in sample_table for selecting samples; together with group_select.
group_selectdefault NULL; the group name used; remain samples within the group.
taxa_name_fulldefault TRUE; Whether use the complete taxonomic name of taxa.
tmp_input_maaslin2default "tmp_input"; the temporary folder used to save the input files for Maaslin2.
tmp_output_maaslin2default "tmp_output"; the temporary folder used to save the output files of Maaslin2.
cor_methoddeprecated. Please use method argument instead.
...parameters passed to Maaslin2 function of Maaslin2 package.
res_cor stored in the object.
\donttest{
t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40])
}
plot_cor()Plot correlation heatmap.
trans_env$plot_cor(
color_vector = c("#053061", "white", "#A50026"),
color_palette = NULL,
filter_feature = NULL,
filter_env = NULL,
keep_full_name = FALSE,
keep_prefix = TRUE,
text_y_order = NULL,
text_x_order = NULL,
xtext_angle = 30,
xtext_size = 10,
xtext_color = "black",
ytext_italic = FALSE,
ytext_size = NULL,
ytext_color = "black",
ytext_position = "right",
sig_label_size = 4,
font_family = NULL,
cluster_ggplot = "none",
cluster_height_rows = 0.2,
cluster_height_cols = 0.2,
na.value = "grey50",
trans = "identity",
ylab_type_italic = deprecated(),
text_y_position = deprecated(),
...
)color_vectordefault c("#053061", "white", "#A50026"); colors with only three values representing low, middle and high values.
color_palettedefault NULL; a customized palette with more color values to be used instead of the parameter color_vector.
filter_featuredefault NULL; character vector; used to filter features that only have labels in the filter_feature vector.
For example, filter_feature = "" can be used to remove features that only have "", no any "*".
filter_envdefault NULL; character vector; used to filter environmental variables that only have labels in the filter_env vector.
For example, filter_env = "" can be used to remove features that only have "", no any "*".
keep_full_namedefault FALSE; whether use the complete taxonomic name.
keep_prefixdefault TRUE; whether retain the taxonomic prefix.
text_y_orderdefault NULL; character vector; customized text for y axis; shown in the plot from the top down.
The input should be consistent with the feature names in the res_cor table.
text_x_orderdefault NULL; character vector; customized text for x axis.
xtext_angledefault 30; number ranging from 0 to 90; used to adjust x axis text angle.
xtext_sizedefault 10; x axis text size.
xtext_colordefault "black"; x axis text color.
ytext_italicdefault FALSE; whether use italic for y axis text.
ytext_sizedefault NULL; y axis text size. NULL means default ggplot2 value.
ytext_colordefault "black"; y axis text color.
ytext_positiondefault "right"; "left" or "right"; the y axis text position.
sig_label_sizedefault 4; the size of significance label shown in the cell.
font_familydefault NULL; font family used.
cluster_ggplotdefault "none"; add clustering dendrogram for ggplot2 based heatmap. Available options: "none", "row", "col" or "both".
"none": no any clustering used; "row": add clustering for rows; "col": add clustering for columns; "both": add clustering for both rows and columns.
cluster_height_rowsdefault 0.2, the dendrogram plot height for rows; available when cluster_ggplot is not "none".
cluster_height_colsdefault 0.2, the dendrogram plot height for columns; available when cluster_ggplot is not "none".
na.valuedefault "grey50"; the color for the missing values.
transdefault "identity"; the transformation for continuous scales in the legend;
see the trans item in ggplot2::scale_colour_gradientn.
ylab_type_italicdeprecated. Please use ytext_italic argument instead.
text_y_positiondeprecated. Please use ytext_position argument instead.
...paremeters passed to ggplot2::geom_tile.
ggplot2 object.
\donttest{
t1$plot_cor()
}
plot_scatterfit()Scatter plot with fitted line based on the correlation or regression.
The most important thing is to make sure that the input x and y
have correponding sample orders. If one of x and y is a matrix, the other will be also transformed to matrix with Euclidean distance.
Then, both of them are transformed to be vectors. If x or y is a vector with a single value, x or y will be
assigned according to the column selection of the data_env in the object.
trans_env$plot_scatterfit(
x = NULL,
y = NULL,
group = NULL,
group_order = NULL,
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
shape_values = NULL,
type = c("cor", "lm")[1],
cor_method = "pearson",
label_sep = ";",
label.x.npc = "left",
label.y.npc = "top",
label.x = NULL,
label.y = NULL,
x_axis_title = "",
y_axis_title = "",
point_size = 5,
point_alpha = 0.6,
line_size = 0.8,
line_color = "black",
line_se = TRUE,
line_se_color = "grey70",
line_alpha = 0.5,
pvalue_trim = 4,
cor_coef_trim = 3,
lm_equation = TRUE,
lm_fir_trim = 2,
lm_sec_trim = 2,
lm_squ_trim = 2,
...
)xdefault NULL; a single numeric or character value, a vector, or a distance matrix used for the x axis.
If x is a single value, it will be used to select the column of data_env in the object.
If x is a distance matrix, it will be transformed to be a vector.
ydefault NULL; a single numeric or character value, a vector, or a distance matrix used for the y axis.
If y is a single value, it will be used to select the column of data_env in the object.
If y is a distance matrix, it will be transformed to be a vector.
groupdefault NULL; a character vector; if length is 1, must be a colname of sample_table in the input dataset;
Otherwise, group should be a vector having same length with x/y (for vector) or column number of x/y (for matrix).
group_orderdefault NULL; a vector used to order groups, i.e. reorder the legend and colors in plot when group is not NULL;
If group_order is NULL and group is provided, the function can first check whether the group column of sample_table is factor.
If group_order is provided, disable the group orders or factor levels in the group column of sample_table.
color_valuesdefault RColorBrewer::brewer.pal(8, "Dark2"); color pallete for different groups.
shape_valuesdefault NULL; a numeric vector for point shape types of groups when group is not NULL, see ggplot2 tutorial.
typedefault c("cor", "lm")[1]; "cor": correlation; "lm" for regression.
cor_methoddefault "pearson"; one of "pearson", "kendall" and "spearman"; correlation method.
label_sepdefault ";"; the separator string between different label parts.
label.x.npcdefault "left"; can be numeric or character vector of the same length as the number of groups and/or panels. If too short, they will be recycled.
value should be between 0 and 1. Coordinates to be used for positioning the label, expressed in "normalized parent coordinates"
allowed values include: i) one of c('right', 'left', 'center', 'centre', 'middle') for x-axis; ii) and one of c( 'bottom', 'top', 'center', 'centre', 'middle') for y-axis.
label.y.npcdefault "top"; same usage with label.x.npc; also see label.y.npc parameter of ggpubr::stat_cor function.
label.xdefault NULL; x axis absolute position for adding the statistic label.
label.ydefault NULL; x axis absolute position for adding the statistic label.
x_axis_titledefault ""; the title of x axis.
y_axis_titledefault ""; the title of y axis.
point_sizedefault 5; point size value.
point_alphadefault 0.6; alpha value for the point color transparency.
line_sizedefault 0.8; line size value.
line_colordefault "black"; fitted line color; only available when group = NULL.
line_sedefault TRUE; Whether show the confidence interval for the fitting.
line_se_colordefault "grey70"; the color to fill the confidence interval when line_se = TRUE.
line_alphadefault 0.5; alpha value for the color transparency of line confidence interval.
pvalue_trimdefault 4; trim the decimal places of p value.
cor_coef_trimdefault 3; trim the decimal places of correlation coefficient.
lm_equationdefault TRUE; whether include the equation in the label when type = "lm".
lm_fir_trimdefault 2; trim the decimal places of first coefficient in regression.
lm_sec_trimdefault 2; trim the decimal places of second coefficient in regression.
lm_squ_trimdefault 2; trim the decimal places of R square in regression.
...other arguments passed to geom_text or geom_label.
ggplot.
\donttest{
t1$plot_scatterfit(x = 1, y = 2, type = "cor")
t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3)
t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE)
t1$plot_scatterfit(x =
dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")
}
print()Print the trans_env object.
trans_env$print()
clone()The objects of this class are cloneable with this method.
trans_env$clone(deep = FALSE)
deepWhether to make a deep clone.
## ------------------------------------------------
## Method `trans_env$new`
## ------------------------------------------------
data(dataset)
data(env_data_16S)
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
## ------------------------------------------------
## Method `trans_env$cal_diff`
## ------------------------------------------------
t1$cal_diff(group = "Group", method = "KW")
t1$cal_diff(group = "Group", method = "anova")
## ------------------------------------------------
## Method `trans_env$cal_autocor`
## ------------------------------------------------
## Not run:
# Spearman correlation
t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman")))
## End(Not run)
## ------------------------------------------------
## Method `trans_env$cal_ordination`
## ------------------------------------------------
t1$cal_ordination(method = "dbRDA", use_measure = "bray")
t1$cal_ordination(method = "RDA", taxa_level = "Genus")
t1$cal_ordination(method = "CCA", taxa_level = "Genus")
## ------------------------------------------------
## Method `trans_env$cal_ordination_anova`
## ------------------------------------------------
t1$cal_ordination_anova()
## ------------------------------------------------
## Method `trans_env$cal_ordination_envfit`
## ------------------------------------------------
t1$cal_ordination_envfit()
## ------------------------------------------------
## Method `trans_env$trans_ordination`
## ------------------------------------------------
t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1)
## ------------------------------------------------
## Method `trans_env$plot_ordination`
## ------------------------------------------------
t1$cal_ordination(method = "RDA")
t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5)
t1$plot_ordination(plot_color = "Group")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"),
centroid_segment_linetype = 1)
t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0),
env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2))
## ------------------------------------------------
## Method `trans_env$cal_mantel`
## ------------------------------------------------
t1$cal_mantel(use_measure = "bray")
t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray")
## ------------------------------------------------
## Method `trans_env$cal_cor`
## ------------------------------------------------
t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40])
## ------------------------------------------------
## Method `trans_env$plot_cor`
## ------------------------------------------------
t1$plot_cor()
## ------------------------------------------------
## Method `trans_env$plot_scatterfit`
## ------------------------------------------------
t1$plot_scatterfit(x = 1, y = 2, type = "cor")
t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3)
t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE)
t1$plot_scatterfit(x =
dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.