| trans_func | R Documentation |
trans_func object for functional prediction.This class is a wrapper for a series of functional prediction analysis on species and communities, including the prokaryotic trait prediction based on Louca et al. (2016) <doi:10.1126/science.aaf4507> and Lim et al. (2020) <10.1038/s41597-020-0516-5>, or fungal trait prediction based on Nguyen et al. (2016) <10.1016/j.funeco.2015.06.006> and Polme et al. (2020) <doi:10.1007/s13225-020-00466-2>; functional redundancy calculation and metabolic pathway abundance prediction Abhauer et al. (2015) <10.1093/bioinformatics/btv287>.
func_group_liststore and show the function group list
new()Create the trans_func object. This function can identify the data type for Prokaryotes or Fungi automatically.
trans_func$new(dataset = NULL)
datasetthe object of microtable Class.
for_what: "prok" or "fungi" or NA, "prok" represent prokaryotes. "fungi" represent fungi. NA stand for unknown according to the Kingdom information.
In this case, if the user still want to use the function to identify species traits, please provide "prok" or "fungi" manually,
e.g. t1$for_what <- "prok".
data(dataset) t1 <- trans_func$new(dataset = dataset)
cal_spe_func()Identify traits of each feature by matching taxonomic assignments to functional database.
trans_func$cal_spe_func(
prok_database = c("FAPROTAX", "NJC19")[1],
fungi_database = c("FUNGuild", "FungalTraits")[1],
FUNGuild_confidence = c("Highly Probable", "Probable", "Possible")
)prok_databasedefault "FAPROTAX"; "FAPROTAX" or "NJC19"; select a prokaryotic trait database:
FAPROTAX; Reference: Louca et al. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305), 1272. <doi:10.1126/science.aaf4507>
NJC19: Lim et al. (2020). Large-scale metabolic interaction network of the mouse and human gut microbiota. Scientific Data, 7(1). <10.1038/s41597-020-0516-5>. Note that the matching in this database is performed at the species level, hence utilizing it demands a higher level of precision in regards to the assignments of species in the taxonomic information table.
fungi_databasedefault "FUNGuild"; "FUNGuild" or "FungalTraits"; select a fungal trait database:
Nguyen et al. (2016) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20(1), 241-248, <doi:10.1016/j.funeco.2015.06.006>
version: FungalTraits_1.2_ver_16Dec_2020V.1.2; Polme et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity 105, 1-16 (2020). <doi:10.1007/s13225-020-00466-2>
FUNGuild_confidencedefault c("Highly Probable", "Probable", "Possible").
Selected 'confidenceRanking' when fungi_database = "FUNGuild".
res_spe_func stored in object.
\donttest{
t1$cal_spe_func(prok_database = "FAPROTAX")
}
cal_spe_func_perc()Calculating the percentages of species with specific trait in communities. The percentages of the taxa with specific trait can reflect corresponding functional potential in the community. So this method is one representation of functional redundancy (FR) without the consideration of phylogenetic distance among taxa. The FR is defined:
FR_{kj}^{unweighted} = \frac{N_{j}}{N_{k}}
FR_{kj}^{weighted} = \frac{\sum_{i=1}^{N_{j}} A_{i}}{\sum_{i=1}^{N_{k}} A_{i}}
where FR_{kj} denotes the FR for sample k and function j. N_{k} is the species number in sample k.
N_{j} is the number of species with function j in sample k.
A_{i} is the abundance (counts) of species i in sample k.
trans_func$cal_spe_func_perc(abundance_weighted = FALSE, perc = TRUE, dec = 2)
abundance_weighteddefault FALSE; whether use abundance of taxa. If FALSE, calculate the functional population percentage. If TRUE, calculate the functional individual percentage.
percdefault TRUE; whether to use percentages in the result. If TRUE, value is bounded between 0 and 100. If FALSE, the result is relative proportion ('abundance_weighted = FALSE') or relative abundance ('abundance_weighted = TRUE') bounded between 0 and 1.
decdefault 2; remained decimal places.
res_spe_func_perc stored in the object.
\donttest{
t1$cal_spe_func_perc(abundance_weighted = TRUE)
}
show_prok_func()Show the annotation information for a function of prokaryotes from FAPROTAX database.
trans_func$show_prok_func(use_func = NULL)
use_funcdefault NULL; the function name.
None.
\donttest{
t1$show_prok_func(use_func = "methanotrophy")
}
trans_spe_func_perc()Transform the res_spe_func_perc table to the long table format for the following visualization.
Also add the group information if the database has hierarchical groups.
trans_func$trans_spe_func_perc()
res_spe_func_perc_trans stored in the object.
\donttest{
t1$trans_spe_func_perc()
}
plot_spe_func_perc()Plot the percentages of species with specific trait in communities.
trans_func$plot_spe_func_perc( add_facet = TRUE, order_x = NULL, color_gradient_low = "#00008B", color_gradient_high = "#9E0142" )
add_facetdefault TRUE; whether use group names as the facets in the plot, see trans_func$func_group_list object.
order_xdefault NULL; character vector; to sort the x axis text; can be also used to select partial samples to show.
color_gradient_lowdefault "#00008B"; the color used as the low end in the color gradient.
color_gradient_highdefault "#9E0142"; the color used as the high end in the color gradient.
ggplot2.
\donttest{
t1$plot_spe_func_perc()
}
cal_tax4fun2()Predict functional potential of communities with Tax4Fun2 method. The function was adapted from the raw Tax4Fun2 package to make it compatible with the microtable object. Pleas cite: Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>
trans_func$cal_tax4fun2( blast_tool_path = NULL, path_to_reference_data = "Tax4Fun2_ReferenceData_v2", path_to_temp_folder = NULL, database_mode = "Ref99NR", normalize_by_copy_number = T, min_identity_to_reference = 97, use_uproc = T, num_threads = 1, normalize_pathways = F )
blast_tool_pathdefault NULL; the folder path, e.g., ncbi-blast-2.5.0+/bin ; blast tools folder downloaded from "ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+" ; e.g., ncbi-blast-2.5.0+-x64-win64.tar.gz for windows system; if blast_tool_path is NULL, search the tools in the environmental path variable.
path_to_reference_datadefault "Tax4Fun2_ReferenceData_v2"; the path that points to files used in the prediction; The directory must contain the Ref99NR or Ref100NR folder; download Ref99NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/DkoZIyZpMNbrzSw/download" or Ref100NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/jIByczak9ZAFUB4/download".
path_to_temp_folderdefault NULL; The temporary folder to store the logfile, intermediate file and result files; if NULL, use the default temporary in the computer system.
database_modedefault 'Ref99NR'; "Ref99NR" or "Ref100NR"; Ref99NR: 99% clustering reference database; Ref100NR: no clustering.
normalize_by_copy_numberdefault TRUE; whether normalize the result by the 16S rRNA copy number in the genomes.
min_identity_to_referencedefault 97; the sequences identity threshold used for finding the nearest species.
use_uprocdefault TRUE; whether use UProC to functionally anotate the genomes in the reference data.
num_threadsdefault 1; the threads used in the blastn.
normalize_pathwaysdefault FALSE; Different to Tax4Fun, when converting from KEGG functions to KEGG pathways, Tax4Fun2 does not equally split KO gene abundances between pathways a functions is affiliated to. The full predicted abundance is affiliated to each pathway. Use TRUE to split the abundances (default is FALSE).
res_tax4fun2_KO and res_tax4fun2_pathway in object.
\dontrun{
t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin",
path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
}
cal_tax4fun2_FRI()Calculate (multi-) functional redundancy index (FRI) of prokaryotic community with Tax4Fun2 method. This function is used to calculating aFRI and rFRI use the intermediate files generated by the function cal_tax4fun2(). please also cite: Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>
trans_func$cal_tax4fun2_FRI()
res_tax4fun2_aFRI and res_tax4fun2_rFRI in object.
\dontrun{
t1$cal_tax4fun2_FRI()
}
clone()The objects of this class are cloneable with this method.
trans_func$clone(deep = FALSE)
deepWhether to make a deep clone.
## ------------------------------------------------
## Method `trans_func$new`
## ------------------------------------------------
data(dataset)
t1 <- trans_func$new(dataset = dataset)
## ------------------------------------------------
## Method `trans_func$cal_spe_func`
## ------------------------------------------------
t1$cal_spe_func(prok_database = "FAPROTAX")
## ------------------------------------------------
## Method `trans_func$cal_spe_func_perc`
## ------------------------------------------------
t1$cal_spe_func_perc(abundance_weighted = TRUE)
## ------------------------------------------------
## Method `trans_func$show_prok_func`
## ------------------------------------------------
t1$show_prok_func(use_func = "methanotrophy")
## ------------------------------------------------
## Method `trans_func$trans_spe_func_perc`
## ------------------------------------------------
t1$trans_spe_func_perc()
## ------------------------------------------------
## Method `trans_func$plot_spe_func_perc`
## ------------------------------------------------
t1$plot_spe_func_perc()
## ------------------------------------------------
## Method `trans_func$cal_tax4fun2`
## ------------------------------------------------
## Not run:
t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin",
path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
## End(Not run)
## ------------------------------------------------
## Method `trans_func$cal_tax4fun2_FRI`
## ------------------------------------------------
## Not run:
t1$cal_tax4fun2_FRI()
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.