An R function for linear mixed model simulation.

Share:

Description

An R function for linear mixed model simulation with generated data set and a given model.

Usage

1
lmm.simu(formula, method = NULL, ALPHA = NULL)

Arguments

formula

A linear mixed model formula.

method

The default linear mixed model approach is MINQUE. Users can choose both or one of two linear mixed model approaches, REML and MINQUE.

ALPHA

A preset nominal probability level.

Details

No data frame is needed when more than one response variables are analyzed

Value

Return list of simulated results for variance components

Author(s)

Jixiang Wu <qgtools@gmail.com>

References

Miller, R. G. 1974. The jackknife - a review. Biometrika, 61:1- 15.

Rao, C.R. 1971. Estimation of variance and covariance components-MINQUE theory. J Multiva Ana 1:19

Rao, C. R. and Kleffe, J. 1980. Estimation of variance components. In Handbook of Statistics. Vol. l: 1-40. Krishnaiah, P. R. ed. New York. North-Holland.

Searle, S. R., Casella, G. and McCulloch, C. E. 1992. Variance Components. John Wiley & Sons, Inc. New York.

Wu J (2012) GenMod: An R package for various agricultural data analyses. ASA, CSSA, and SSSA 2012 International Annual Meetings, Cincinnati, OH, p 127

Wu J., Bondalapati K., Glover K., Berzonsky W., Jenkins J.N., McCarty J.C. 2013. Genetic analysis without replications: model evaluation and application in spring wheat. Euphytica. 190:447-458

Zhu J. 1989. Estimation of Genetic Variance Components in the General Mixed Model. Ph.D. Dissertation, NC State University, Raleigh, U.S.A

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
  library(minque)
  data(ncii)
  
  lmm.inf=lmm.check(Yld~1|Female*Male+Rep,data=ncii)

  lmm.inf  ##there are five variance components
  v=c(20,20,20,20,20) ##there are five variance components
  b=as.vector(100)    ##there is only population mean as fixed effect
  Y=lmm.simudata(Yld~1|Female*Male+Rep,data=ncii,v=v,b=b,SimuNum=50)
  Female=factor(ncii$Female)
  Male=factor(ncii$Male)
  Rep=factor(ncii$Rep)
  res=lmm.simu(Y~1|Female*Male+Rep)
  res[[1]]
  #End