RCI | R Documentation |
Computes an IRT version of the "reliable change index" (RCI) proposed by Jacobson and Traux (1991) but modified to use IRT information about scores and measurement error (see Jabrayilov, Emons, and Sijtsma (2016). Main benefit of the IRT approach is the inclusion of response pattern information in the pre/post data score estimates, as well as conditional standard error of measurement information.
RCI(
mod_pre,
predat,
postdat,
mod_post = mod_pre,
cutoffs = NULL,
SEM.pre = NULL,
SEM.post = NULL,
Fisher = FALSE,
shiny = FALSE,
main = "Test Scores",
...
)
mod_pre |
single-group model fitted by |
predat |
a vector (if one individual) or matrix/data.frame of response data to be scored, where each individuals' responses are included in exactly one row |
postdat |
same as |
mod_post |
(optional) IRT model for post-test if different from pre-test; otherwise, the pre-test model will be used |
cutoffs |
optional vector of length 2 indicating the type of cut-offs to
report (e.g., |
SEM.pre |
standard error of measurement for the pretest. This can be used instead of
|
SEM.post |
(optional) standard error of measurement for the post-test.
Using this will create a pooled version of the SEM; otherwise, |
Fisher |
logical; use the Fisher/expected information function to compute the
SE terms? If |
shiny |
logical; launch an interactive shiny applications for real-time scoring
of supplied total-scores or response vectors? Only requires |
main |
main label to use when |
... |
additional arguments passed to |
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v048.i06")}
Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59, 12-19.
Jabrayilov, R. , Emons, W. H. M., & Sijtsma, K. (2016). Comparison of Classical Test Theory and Item Response Theory in Individual Change Assessment. Applied Psychological Measurement, 40 (8), 559-572.
## Not run:
# simulate some data
N <- 1000
J <- 20 # number of items
a <- matrix(rlnorm(J,.2,.3))
d <- rnorm(J)
theta <- matrix(rnorm(N))
dat_pre <- simdata(a, d, itemtype = '2PL', Theta = theta)
# first 3 cases decrease by 1/2
theta2 <- theta - c(1/2, 1/2, 1/2, numeric(N-3))
dat_post <- simdata(a, d, itemtype = '2PL', Theta = theta2)
mod <- mirt(dat_pre)
# all changes using fitted model from pre data
RCI(mod, predat=dat_pre, postdat=dat_post)
# single response pattern change using EAP information
RCI(mod, predat=dat_pre[1,], postdat=dat_post[1,])
# WLE estimator with Fisher information for SE (see Jabrayilov et al. 2016)
RCI(mod, predat = dat_pre[1,], postdat = dat_post[1,],
method = 'WLE', Fisher = TRUE)
# multiple respondents
RCI(mod, predat = dat_pre[1:6,], postdat = dat_post[1:6,])
# include large-sample z-type cutoffs
RCI(mod, predat = dat_pre[1:6,], postdat = dat_post[1:6,],
cutoffs = c(-1.96, 1.96))
######
# CTT version by omitting IRT model
# Requires either sample or population SEM's as input
(istats <- itemstats(dat_pre)$overall)
SEM.alpha <- istats$SEM.alpha # SEM estimate of dat_pre
# assumes SEM.post = SEM.pre
RCI(predat = dat_pre, postdat = dat_post, SEM.pre=SEM.alpha)
# include cutoffs
RCI(predat = dat_pre, postdat = dat_post, SEM.pre=SEM.alpha,
cutoffs=c(-1.96, 1.96))
# allows SEM.post != SEM.pre
(istats.post <- itemstats(dat_post)$overall)
SEM.alpha.post <- istats.post$SEM.alpha
RCI(predat = dat_pre, postdat = dat_post,
SEM.pre=SEM.alpha, SEM.post=SEM.alpha.post)
######
# interactive shiny interfaces for live scoring
mod_pre <- mirt(Science)
# (optional) setup mod_post to have medium effect size change (d = 0.5)
sv <- mod2values(mod_pre)
sv$value[sv$name == 'MEAN_1'] <- 0.5
mod_post <- mirt(Science, pars=sv, TOL=NA)
# only use pre-test model for scoring
if(interactive()){
RCI(mod_pre=mod_pre, shiny=TRUE)
# use both pre-test and post-test models for including empirical priors
RCI(mod_pre=mod_pre, mod_post=mod_post, shiny=TRUE,
main='Perceptions of Science and Technology')
}
############################
# Example where individuals take completely different item set pre-post
# but prior calibration has been performed to equate the items
dat <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
mod <- mirt(dat)
# with N=5 individuals under investigation
predat <- postdat <- dat[1:5,]
predat[, 17:32] <- NA
postdat[, 1:16] <- NA
head(predat)
head(postdat)
RCI(mod, predat, postdat)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.