RCI | R Documentation |
Computes an IRT version of the "reliable change index" (RCI) proposed by Jacobson and Traux (1991) but modified to use IRT information about scores and measurement error (see Jabrayilov, Emons, and Sijtsma (2016). Main benefit of the IRT approach is the inclusion of response pattern information in the pre/post data score estimates, as well as conditional standard error of measurement information.
RCI(
mod_pre,
predat,
postdat,
mod_post = mod_pre,
cutoffs = NULL,
rxx.method = "pooled",
rxx.pre = NULL,
rxx.post = NULL,
SD.pre = NULL,
SD.post = NULL,
Fisher = FALSE,
...
)
mod_pre |
single-group model fitted by |
predat |
a vector (if one individual) or matrix/data.frame of response data to be scored, where each individuals' responses are included in exactly one row |
postdat |
same as |
mod_post |
(optional) IRT model for post-test if different from pre-test; otherwise, the pre-test model will be used |
cutoffs |
optional vector of length 2 indicating the type of cut-offs to
report (e.g., |
rxx.method |
which method to use for pooling the reliability
information. Currently supports |
rxx.pre |
CTT reliability of pretest. If not supplied will be computed using coefficient
alpha from |
rxx.post |
same as |
SD.pre |
standard deviation of pretest. If not supplied will be computed from |
SD.post |
same as |
Fisher |
logical; use the Fisher/expected information function to compute the
SE terms? If |
... |
additional arguments passed to |
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v048.i06")}
Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59, 12-19.
Jabrayilov, R. , Emons, W. H. M., & Sijtsma, K. (2016). Comparison of Classical Test Theory and Item Response Theory in Individual Change Assessment. Applied Psychological Measurement, 40 (8), 559-572.
## Not run:
# simulate some data
N <- 1000
J <- 20 # number of items
a <- matrix(rlnorm(J,.2,.3))
d <- rnorm(J)
theta <- matrix(rnorm(N))
dat_pre <- simdata(a, d, itemtype = '2PL', Theta = theta)
# first 3 cases decrease by 1/2
theta2 <- theta - c(1/2, 1/2, 1/2, numeric(N-3))
dat_post <- simdata(a, d, itemtype = '2PL', Theta = theta2)
mod <- mirt(dat_pre)
# all changes using fitted model from pre data
RCI(mod, predat=dat_pre, postdat=dat_post)
# single response pattern change using EAP information
RCI(mod, predat=dat_pre[1,], postdat=dat_post[1,])
# WLE estimator with Fisher information for SE (see Jabrayilov et al. 2016)
RCI(mod, predat = dat_pre[1,], postdat = dat_post[1,],
method = 'WLE', Fisher = TRUE)
# multiple respondents
RCI(mod, predat = dat_pre[1:6,], postdat = dat_post[1:6,])
# include large-sample z-type cutoffs
RCI(mod, predat = dat_pre[1:6,], postdat = dat_post[1:6,],
cutoffs = c(-1.96, 1.96))
######
# CTT version by omitting IRT model (easiest to use complete dataset)
RCI(predat = dat_pre, postdat = dat_post)
# CTT version with pre-computed information
RCI(predat = dat_pre[1:6,], postdat = dat_post[1:6,],
rxx.pre=.6, rxx.post=.6, SD.pre=2, SD.post=3,
cutoffs = c(-1.96, 1.96))
# just pre-test rxx
RCI(predat = dat_pre[1:6,], postdat = dat_post[1:6,],
rxx.pre=.6, SD.pre=2, rxx.method = 'pre')
############################
# Example where individuals take completely different item set pre-post
# but prior calibration has been performed to equate the items
dat <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
mod <- mirt(dat)
# with N=5 individuals under investigation
predat <- postdat <- dat[1:5,]
predat[, 17:32] <- NA
postdat[, 1:16] <- NA
head(predat)
head(postdat)
RCI(mod, predat, postdat)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.