mixedmirt: Mixed effects modeling for MIRT models

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/mixedmirt.R

Description

mixedmirt fits MIRT models using FIML estimation to dichotomous and polytomous IRT models conditional on fixed and random effect of person and item level covariates. This can also be understood as 'explanatory IRT' if only fixed effects are modeled, or multilevel/mixed IRT if random and fixed effects are included. The method uses the MH-RM algorithm exclusively. Additionally, computation of the log-likelihood can be sped up by using parallel estimation via mirtCluster.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
mixedmirt(
  data,
  covdata = NULL,
  model,
  fixed = ~1,
  random = NULL,
  itemtype = "Rasch",
  lr.fixed = ~1,
  lr.random = NULL,
  itemdesign = NULL,
  constrain = NULL,
  pars = NULL,
  return.design = FALSE,
  SE = TRUE,
  internal_constraints = TRUE,
  technical = list(SEtol = 1e-04),
  ...
)

Arguments

data

a matrix or data.frame that consists of numerically ordered data, with missing data coded as NA

covdata

a data.frame that consists of the nrow(data) by K 'person level' fixed and random predictors. If missing data are present in this object then the observations from covdata and data will be removed row-wise via the rowSums(is.na(covdata)) > 0

model

an object returned from, or a string to be passed to, mirt.model() to declare how the IRT model is to be estimated. See mirt.model for more details

fixed

a right sided R formula for specifying the fixed effect (aka 'explanatory') predictors from covdata and itemdesign. To estimate the intercepts for each item the keyword items is reserved and automatically added to the itemdesign input. If any polytomous items are being model the items are argument is not valid since all intercept parameters are freely estimated and identified with the parameterizations found in mirt, and the first column in the fixed design matrix (commonly the intercept or a reference group) is omitted

random

a right sided formula or list of formulas containing crossed random effects of the form v1 + ... v_n | G, where G is the grouping variable and v_n are random numeric predictors within each group. If no intercept value is specified then by default the correlations between the v's and G are estimated, but can be suppressed by including the ~ -1 + ... or 0 constant. G may contain interaction terms, such as group:items to include cross or person-level interactions effects

itemtype

same as itemtype in mirt, except when the fixed or random inputs are used does not support the following item types: c('PC2PL', 'PC3PL', '2PLNRM', '3PLNRM', '3PLuNRM', '4PLNRM')

lr.fixed

an R formula (or list of formulas) to specify regression effects in the latent variables from the variables in covdata. This is used to construct models such as the so-called 'latent regression model' to explain person-level ability/trait differences. If a named list of formulas is supplied (where the names correspond to the latent trait names in model) then specific regression effects can be estimated for each factor. Supplying a single formula will estimate the regression parameters for all latent traits by default.

lr.random

a list of random effect terms for modeling variability in the latent trait scores, where the syntax uses the same style as in the random argument. Useful for building so-called 'multilevel IRT' models which are non-Rasch (multilevel Rasch models do not technically require these because they can be built using the fixed and random inputs alone)

itemdesign

a data.frame object used to create a design matrix for the items, where each nrow(itemdesign) == nitems and the number of columns is equal to the number of fixed effect predictors (i.e., item intercepts). By default an items variable is reserved for modeling the item intercept parameters

constrain

a list indicating parameter equality constrains. See mirt for more detail

pars

used for parameter starting values. See mirt for more detail

return.design

logical; return the design matrices before they have (potentially) been reassigned?

SE

logical; compute the standard errors by approximating the information matrix using the MHRM algorithm? Default is TRUE

internal_constraints

logical; use the internally defined constraints for constraining effects across persons and items? Default is TRUE. Setting this to FALSE runs the risk of under-identification

technical

the technical list passed to the MH-RM estimation engine, with the SEtol default increased to .0001. Additionally, the argument RANDSTART is available to indicate at which iteration (during the burn-in stage) the additional random effect variables should begin to be approximated (i.e., elements in lr.random and random). The default for RANDSTART is to start at iteration 100, and when random effects are included the default number of burn-in iterations is increased from 150 to 200. See mirt for further details

...

additional arguments to be passed to the MH-RM estimation engine. See mirt for more details and examples

Details

For dichotomous response models, mixedmirt follows the general form

P(x = 1|θ, ψ) = g + \frac{(u - g)}{1 + exp(-1 * [θ a + X β + Z δ])}

where X is a design matrix with associated β fixed effect intercept coefficients, and Z is a design matrix with associated δ random effects for the intercepts. For simplicity and easier interpretation, the unique item intercept values typically found in X β are extracted and reassigned within mirt's 'intercept' parameters (e.g., 'd'). To observe how the design matrices are structured prior to reassignment and estimation pass the argument return.design = TRUE.

Polytomous IRT models follow a similar format except the item intercepts are automatically estimated internally, rendering the items argument in the fixed formula redundant and therefore must be omitted from the specification. If there are a mixture of dichotomous and polytomous items the intercepts for the dichotomous models are also estimated for consistency.

The decomposition of the θ parameters is also possible to form latent regression and multilevel IRT models by using the lr.fixed and lr.random inputs. These effects decompose θ such that

θ = V Γ + W ζ + ε

where V and W are fixed and random effects design matrices for the associated coefficients.

To simulate maximum a posteriori estimates for the random effect terms use the randef function.

Value

function returns an object of class MixedClass (MixedClass-class).

Author(s)

Phil Chalmers rphilip.chalmers@gmail.com

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi: 10.18637/jss.v048.i06

Chalmers, R. P. (2015). Extended Mixed-Effects Item Response Models with the MH-RM Algorithm. Journal of Educational Measurement, 52, 200-222. doi: 10.1111/jedm.12072

See Also

mirt, randef, fixef, boot.mirt

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
## Not run: 

#make some data
set.seed(1234)
N <- 750
a <- matrix(rlnorm(10,.3,1),10,1)
d <- matrix(rnorm(10), 10)
Theta <- matrix(sort(rnorm(N)))
pseudoIQ <- Theta * 5 + 100  + rnorm(N, 0 , 5)
pseudoIQ <- (pseudoIQ - mean(pseudoIQ))/10  #rescale variable for numerical stability
group <- factor(rep(c('G1','G2','G3'), each = N/3))
data <- simdata(a,d,N, itemtype = rep('2PL',10), Theta=Theta)
covdata <- data.frame(group, pseudoIQ)
#use parallel computing
mirtCluster()

#specify IRT model
model <- 'Theta = 1-10'

#model with no person predictors
mod0 <- mirt(data, model, itemtype = 'Rasch')

#group as a fixed effect predictor (aka, uniform dif)
mod1 <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items)
anova(mod0, mod1)
summary(mod1)
coef(mod1)

#same model as above in lme4
wide <- data.frame(id=1:nrow(data),data,covdata)
long <- reshape2::melt(wide, id.vars = c('id', 'group', 'pseudoIQ'))
library(lme4)
lmod0 <- glmer(value ~ 0 + variable + (1|id), long, family = binomial)
lmod1 <- glmer(value ~ 0 + group + variable + (1|id), long, family = binomial)
anova(lmod0, lmod1)

#model using 2PL items instead of Rasch
mod1b <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items, itemtype = '2PL')
anova(mod1, mod1b) #better with 2PL models using all criteria (as expected, given simdata pars)

#continuous predictor with group
mod2 <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items + pseudoIQ)
summary(mod2)
anova(mod1b, mod2)

#view fixed design matrix with and without unique item level intercepts
withint <- mixedmirt(data, covdata, model, fixed = ~ 0 + items + group, return.design = TRUE)
withoutint <- mixedmirt(data, covdata, model, fixed = ~ 0 + group, return.design = TRUE)

#notice that in result above, the intercepts 'items1 to items 10' were reassigned to 'd'
head(withint$X)
tail(withint$X)
head(withoutint$X) #no intercepts design here to be reassigned into item intercepts
tail(withoutint$X)

###################################################
### random effects
#make the number of groups much larger
covdata$group <- factor(rep(paste0('G',1:50), each = N/50))

#random groups
rmod1 <- mixedmirt(data, covdata, 1, fixed = ~ 0 + items, random = ~ 1|group)
summary(rmod1)
coef(rmod1)

#random groups and random items
rmod2 <- mixedmirt(data, covdata, 1, random = list(~ 1|group, ~ 1|items))
summary(rmod2)
eff <- randef(rmod2) #estimate random effects

#random slopes with fixed intercepts (suppressed correlation)
rmod3 <- mixedmirt(data, covdata, 1, fixed = ~ 0 + items, random = ~ -1 + pseudoIQ|group)
summary(rmod3)
eff <- randef(rmod3)
str(eff)

###################################################
##LLTM, and 2PL version of LLTM
data(SAT12)
data <- key2binary(SAT12,
                   key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
model <- 'Theta = 1-32'

# Suppose that the first 16 items were suspected to be easier than the last 16 items,
#   and we wish to test this item structure hypothesis (more intercept designs are possible
#   by including more columns).
itemdesign <- data.frame(itemorder = factor(c(rep('easier', 16), rep('harder', 16))))

#notice that the 'fixed = ~ ... + items' argument is omitted
LLTM <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemdesign = itemdesign,
   SE = TRUE) # SE argument ensures that the information matrix is computed accurately
summary(LLTM)
coef(LLTM)
wald(LLTM)
L <- matrix(c(-1, 1, 0), 1)
wald(LLTM, L) #first half different from second

#compare to items with estimated slopes (2PL)
twoPL <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemtype = '2PL',
                   itemdesign = itemdesign)
#twoPL not mixing too well (AR should be between .2 and .5), decrease MHcand
twoPL <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemtype = '2PL',
                  itemdesign = itemdesign, technical = list(MHcand = 0.8))
anova(twoPL, LLTM) #much better fit
summary(twoPL)
coef(twoPL)

wald(twoPL)
L <- matrix(0, 1, 34)
L[1, 1] <- 1
L[1, 2] <- -1
wald(twoPL, L) #n.s., which is the correct conclusion. Rasch approach gave wrong inference

##LLTM with item error term
LLTMwithError <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, random = ~ 1|items,
    itemdesign = itemdesign)
summary(LLTMwithError)
#large item level variance after itemorder is regressed; not a great predictor of item difficulty
coef(LLTMwithError)

###################################################
### Polytomous example

#make an arbitrary group difference
covdat <- data.frame(group = rep(c('m', 'f'), nrow(Science)/2))

#partial credit model
mod <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group)
coef(mod)

#gpcm to estimate slopes
mod2 <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group,
                 itemtype = 'gpcm')
summary(mod2)
anova(mod, mod2)

#graded model
mod3 <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group,
                 itemtype = 'graded')
coef(mod3)


###################################################
# latent regression with Rasch and 2PL models

set.seed(1)
n <- 300
a <- matrix(1, 10)
d <- matrix(rnorm(10))
Theta <- matrix(c(rnorm(n, 0), rnorm(n, 1), rnorm(n, 2)))
covdata <- data.frame(group=rep(c('g1','g2','g3'), each=n))
dat <- simdata(a, d, N=n*3, Theta=Theta, itemtype = '2PL')

#had we known the latent abilities, we could have computed the regression coefs
summary(lm(Theta ~ covdata$group))

#but all we have is observed test data. Latent regression helps to recover these coefs
#Rasch model approach (and mirt equivalent)
rmod0 <- mirt(dat, 1, 'Rasch') # unconditional

# these two models are equivalent
rmod1a <- mirt(dat, 1, 'Rasch', covdata = covdata, formula = ~ group)
rmod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group)
anova(rmod0, rmod1b)
coef(rmod1a, simplify=TRUE)
summary(rmod1b)

# 2PL, requires different input to allow Theta variance to remain fixed
mod0 <- mirt(dat, 1) # unconditional
mod1a <- mirt(dat, 1, covdata = covdata, formula = ~ group, itemtype = '2PL')
mod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.fixed = ~group, itemtype = '2PL')
anova(mod0, mod1b)
coef(mod1a)$lr.betas
summary(mod1b)

# specifying specific regression effects is accomplished by passing a list of formula
model <- 'F1 = 1-5
         F2 = 6-10'
covdata$contvar <- rnorm(nrow(covdata))
mod2 <- mirt(dat, model, itemtype = 'Rasch', covdata=covdata,
        formula = list(F1 = ~ group + contvar, F2 = ~ group))
coef(mod2)[11:12]
mod2b <- mixedmirt(dat, covdata, model, fixed = ~ 0 + items,
        lr.fixed = list(F1 = ~ group + contvar, F2 = ~ group))
summary(mod2b)

####################################################
## Simulated Multilevel Rasch Model

set.seed(1)
N <- 2000
a <- matrix(rep(1,10),10,1)
d <- matrix(rnorm(10))
cluster = 100
random_intercept = rnorm(cluster,0,1)
Theta = numeric()
for (i in 1:cluster)
    Theta <- c(Theta, rnorm(N/cluster,0,1) + random_intercept[i])

group = factor(rep(paste0('G',1:cluster), each = N/cluster))
covdata <- data.frame(group)
dat <- simdata(a,d,N, itemtype = rep('2PL',10), Theta=matrix(Theta))

# null model
mod1 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, random = ~ 1|group)
summary(mod1)

# include level 2 predictor for 'group' variance
covdata$group_pred <- rep(random_intercept, each = N/cluster)
mod2 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group_pred, random = ~ 1|group)

# including group means predicts nearly all variability in 'group'
summary(mod2)
anova(mod1, mod2)

# can also be fit for Rasch/non-Rasch models with the lr.random input
mod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.random = ~ 1|group)
summary(mod1b)

mod2b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group_pred, lr.random = ~ 1|group)
summary(mod2b)
anova(mod1b, mod2b)

mod3 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.random = ~ 1|group, itemtype = '2PL')
summary(mod3)
anova(mod1b, mod3)

head(cbind(randef(mod3)$group, random_intercept))


## End(Not run)

mirt documentation built on June 29, 2021, 1:06 a.m.