Nothing
#' Compute multidimensional discrimination index
#'
#' Returns a vector containing the MDISC values for each item in the model input object (Reckase, 2009).
#'
#' @aliases MDISC
#' @param x an object of class 'SingleGroupClass', or an object of class 'MultipleGroupClass' if a suitable
#' \code{group} input were supplied
#' @param group group argument to pass to \code{\link{extract.group}} function. Required when the input object is
#' a multiple-group model
#'
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @references
#' Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory
#' Package for the R Environment. \emph{Journal of Statistical Software, 48}(6), 1-29.
#' \doi{10.18637/jss.v048.i06}
#'
#' Reckase, M. D. (2009). Multidimensional Item Response Theory. Springer.
#'
#' @seealso \code{\link{extract.group}}
#'
#' @keywords discrimination
#' @export MDISC
#' @examples
#' \dontrun{
#'
#' mod <- mirt(Science, 2)
#' MDISC(mod)
#'
#' }
MDISC <- function(x, group = NULL){
if(missing(x)) missingMsg('x')
if(is(x, 'MultipleGroupClass') && is.null(group))
stop('Input must be a SingleGroupClass object or a MultipleGroupClass object with a suitable group input',
call.=FALSE)
if(!is.null(group) && is(x, 'MultipleGroupClass'))
x <- extract.group(x=x, group=group)
stopifnot(class(x) == 'SingleGroupClass')
ret <- numeric(extract.mirt(x, 'nitems'))
for(i in seq_len(length(ret))){
item <- extract.item(x, i)
as <- ExtractLambdas(item)
ret[i] <- sqrt(as %*% as)
}
names(ret) <- extract.mirt(x, 'itemnames')
ret
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.