Nothing
#' Full information maximum likelihood estimation of multidimensional IRT models
#'
#' Analysis of dichotomous and polytomous response data using
#' unidimensional and multidimensional latent trait models under the Item
#' Response Theory (IRT) paradigm. Exploratory and confirmatory models can be
#' estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory
#' bi-factor and two-tier analyses are available for modeling item testlets.
#' Multiple group analysis and mixed effects designs also are available for
#' detecting differential item and test functioning as well as modeling
#' item and person covariates. Finally, latent class models such as the DINA,
#' DINO, multidimensional latent class, mixture and zero-inflated IRT models,
#' and several other discrete variable models are supported.
#'
#' Users interested in the most recent version of this package can visit
#' \url{https://github.com/philchalmers/mirt} and follow the instructions
#' for installing the package from source. Questions regarding the package can
#' be sent to the mirt-package Google Group, located at
#' \url{https://groups.google.com/forum/#!forum/mirt-package}. User contributed files,
#' workshop files, and evaluated help files are also available on the package wiki
#' (\url{https://github.com/philchalmers/mirt/wiki}).
#'
#'
#'
#' @name mirt-package
#' @title Full information maximum likelihood estimation of IRT models.
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @useDynLib mirt
#' @import stats lattice GPArotation Rcpp stats4 methods mgcv splines vegan dcurver pbapply
#' @importFrom utils write.table flush.console packageVersion capture.output head
#' @importFrom gridExtra grid.arrange
#' @importFrom graphics symbols
#' @importFrom Deriv Deriv
#' @importFrom SimDesign manageWarnings
#' @exportMethod anova residuals summary logLik vcov
#' @references
#' Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory
#' Package for the R Environment. \emph{Journal of Statistical Software, 48}(6), 1-29.
#' \doi{10.18637/jss.v048.i06}
#' @keywords package
NULL
#' Description of Science data
#'
#' A 4-item data set borrowed from \code{ltm} package in R, first example
#' of the \code{grm()} function. See more complete documentation therein, as
#' well as Karlheinz and Melich (1992).
#'
#'
#' @name Science
#' @docType data
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @references
#'
#' Karlheinz, R. and Melich, A. (1992). Euro-Barometer 38.1:
#' \emph{Consumer Protection and Perceptions of Science and Technology}.
#' INRA (Europe), Brussels. [computer file]
#'
#' @keywords data
#' @examples
#'
#' \dontrun{
#' itemstats(Science)
#'
#' mod <- mirt(Science, 1)
#' plot(mod, type = 'trace')
#' }
NULL
#' Social Life Feelings Data
#'
#' A 5-item data set analyzed by Bartholomew (1998). Data contains
#' dichotomous responses (endorsement vs non-endorsement) from 1490 German
#' respondents to five statements on perceptions of social life.
#'
#' @name SLF
#' @docType data
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @references
#' Bartholomew, D., J. (1998). Scaling unobservable constructs in social science. Journal of the Royal
#' Statistical Society - Series C, 47, 1-13.
#' @keywords data
#' @examples
#'
#' \dontrun{
#' # tabular format
#' data(SLF)
#' SLF
#'
#' # full dataset
#' full <- expand.table(SLF)
#' itemstats(full)
#'
#' mod <- mirt(full)
#' plot(mod, type = 'trace')
#'
#' }
NULL
#' Description of SAT12 data
#'
#' Data obtained from the TESTFACT (Woods et al., 2003) manual, with 32 response pattern
#' scored items for a grade 12 science assessment test (SAT) measuring topics of chemistry,
#' biology, and physics. The scoring key for these data is
#' [1, 4, 5, 2, 3, 1, 2, 1, 3, 1, 2, 4, 2, 1, 5, 3, 4, 4, 1, 4, 3, 3, 4, 1, 3, 5, 1, 3, 1, 5, 4, 5],
#' respectively. However, careful analysis using the nominal response model suggests that the
#' scoring key for item 32 may be incorrect, and should be changed from 5 to 3.
#'
#'
#' @name SAT12
#' @docType data
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @references
#'
#' Wood, R., Wilson, D. T., Gibbons, R. D., Schilling, S. G., Muraki, E., & Bock, R. D. (2003).
#' TESTFACT 4 for Windows: Test Scoring, Item Statistics, and Full-information Item Factor Analysis
#' [Computer software]. Lincolnwood, IL: Scientific Software International.
#'
#' @keywords data
#' @examples
#'
#' \dontrun{
#'
#' itemstats(SAT12, use_ts = FALSE)
#'
#' # score the data (missing scored as 0)
#' head(SAT12)
#' dat <- key2binary(SAT12,
#' key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
#' head(dat)
#' itemstats(dat)
#'
#' # score the data, missing (value of 8) treated as NA
#' SAT12missing <- SAT12
#' SAT12missing[SAT12missing == 8] <- NA
#' dat <- key2binary(SAT12missing,
#' key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
#' head(dat)
#'
#' # potentially better scoring for item 32 (based on nominal model finding)
#' dat <- key2binary(SAT12,
#' key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,3))
#' }
NULL
#' Description of LSAT7 data
#'
#' Data from Bock & Lieberman (1970); contains 5 dichotomously scored
#' items obtained from the Law School Admissions Test, section 7.
#'
#'
#' @name LSAT7
#' @docType data
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @references
#' Bock, R. D., & Lieberman, M. (1970). Fitting a response model for \emph{n}
#' dichotomously scored items. \emph{Psychometrika, 35}(2), 179-197.
#'
#' @keywords data
#' @examples
#'
#' \dontrun{
#' dat <- expand.table(LSAT7)
#' head(dat)
#' itemstats(dat)
#'
#' (mod <- mirt(dat, 1))
#' coef(mod)
#' }
NULL
#' Description of LSAT6 data
#'
#' Data from Thissen (1982); contains 5 dichotomously scored
#' items obtained from the Law School Admissions Test, section 6.
#'
#'
#' @name LSAT6
#' @docType data
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @references
#'
#' Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model.
#' \emph{Psychometrika, 47}, 175-186.
#'
#' @keywords data
#' @examples
#'
#' \dontrun{
#' dat <- expand.table(LSAT6)
#' head(dat)
#' itemstats(dat)
#'
#' model <- 'F = 1-5
#' CONSTRAIN = (1-5, a1)'
#' (mod <- mirt(dat, model))
#' M2(mod)
#' itemfit(mod)
#' coef(mod, simplify=TRUE)
#'
#' # equivalentely, but with a different parameterization
#' mod2 <- mirt(dat, 1, itemtype = 'Rasch')
#' anova(mod, mod2) #equal
#' M2(mod2)
#' itemfit(mod2)
#' coef(mod2, simplify=TRUE)
#' sqrt(coef(mod2)$GroupPars[2]) #latent SD equal to the slope in mod
#'
#' }
NULL
#' Description of ASVAB data
#'
#' Data from
#'
#'
#' @name LSAT7
#' @docType data
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @references
#' Bock, R. D., & Lieberman, M. (1970). Fitting a response model for \emph{n}
#' dichotomously scored items. \emph{Psychometrika, 35}(2), 179-197.
#'
#' @keywords data
#' @examples
#'
#' \dontrun{
#' dat <- expand.table(LSAT7)
#' head(dat)
#' itemstats(dat)
#'
#' (mod <- mirt(dat, 1))
#' coef(mod)
#' }
NULL
#' Description of deAyala data
#'
#' Mathematics data from de Ayala (2009; pg. 14); 5 item dataset in table format.
#'
#'
#' @name deAyala
#' @docType data
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @references
#'
#' de Ayala, R. J. (2009). \emph{The theory and practice of item response theory}. Guilford Press.
#'
#' @keywords data
#' @examples
#'
#' \dontrun{
#' dat <- expand.table(deAyala)
#' head(dat)
#' itemstats(dat)
#'
#' }
NULL
#' Description of Bock 1997 data
#'
#' A 3-item tabulated data set extracted from Table 3 in Chapter Two.
#'
#'
#' @name Bock1997
#' @docType data
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @keywords data
#' @references
#' Bock, R. D. (1997). The Nominal Categories Model. In van der Linden, W. J. & Hambleton, R. K.
#' \emph{Handbook of modern item response theory}. New York: Springer.
#'
#' @examples
#'
#' \dontrun{
#' dat <- expand.table(Bock1997)
#' head(dat)
#' itemstats(dat, use_ts=FALSE)
#'
#' mod <- mirt(dat, 1, 'nominal')
#'
#' # reproduce table 3 in Bock (1997)
#' fs <- round(fscores(mod, verbose = FALSE, full.scores = FALSE)[,c('F1','SE_F1')],2)
#' fttd <- residuals(mod, type = 'exp')
#' table <- data.frame(fttd[,-ncol(fttd)], fs)
#' table
#'
#' mod <- mirt(dat, 1, 'nominal')
#' coef(mod)
#'
#' }
NULL
#' Description of ASVAB data
#'
#' Table of counts extracted from Mislvey (1985). Data the 16 possible
#' response patterns observed for four items from the arithmetic reasoning
#' test of the Armed Services Vocational Aptitude Battery (ASVAB), Form 8A,
#' from samples of white males and females and black males and females.
#'
#' @name ASVAB
#' @docType data
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @references
#'
#' Mislevy, R. J. (1985). Estimation of latent group effects.
#' \emph{Journal of the American Statistical Association, 80}, 993-997.
#'
#' @keywords data
#' @examples
#'
#' data(ASVAB)
#' datWM <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, White_Male)))
#' datWF <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, White_Female)))
#' datBM <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, Black_Male)))
#' datBF <- expand.table(subset(ASVAB, select=c(Item.1:Item.4, Black_Female)))
#'
#' dat <- rbind(datWM, datWF, datBM, datBF)
#' sex <- rep(c("Male", "Female", "Male", "Female"),
#' times=c(nrow(datWM), nrow(datWF), nrow(datBM), nrow(datBF))) |> factor()
#' color <- rep(c("White", "Black"),
#' times=c(nrow(datWM) + nrow(datWF), nrow(datBM) + nrow(datBF))) |> factor()
#' group <- sex:color
#'
#' itemstats(dat, group=group)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.