Description Usage Arguments Details Value Author(s) References See Also Examples
This function statistically compares product-moment correlation coefficients in independent and dependent samples.
1 2 3 4 5 |
x |
a numeric vector. |
y |
a numeric vector. |
z |
a numeric vector. |
group |
a numeric vector indiating the group membership. |
r.xy |
alternative specification, product-moment correlation coefficient between |
r.xz |
alternative specification, product-moment correlation coefficient between |
r.yz |
alternative specification, product-moment correlation coefficient between |
n |
alternative specification, number of observations. |
r.1 |
alternative specification, product-moment correlation coefficient in group 1. |
r.2 |
alternative specification, product-moment correlation coefficient in group 2. |
n.1 |
alternative specification, number of observations in group 1. |
n.2 |
alternative specification, number of observations in group 2. |
alternative |
a character string describing the alternative hypothesis,
must be one of |
conf.level |
confidence level of the interval. |
digits |
integer indicating the number of decimal places to be displayed. |
output |
logical: if |
In dependent samples, the function tests the two-sided null hypothesis H0: ρ .xy = ρ .xz or
the one-sided null hypothesis H0: ρ .xy >= ρ .xz or ρ .xy <= ρ .xz. Function parameters
are specified using either (x
, y
, z
) or (r.xy
, r.xz
, r.yz
, n
).
In independent samples, the function tests the two-sided null hypothesis H0: ρ.1 = ρ.2 or
the one-sided null hypothesis H0: ρ.1 >= ρ.2 or ρ.1 <= ρ.2. Function parameters
are specified using either (x
, y
, group
) or (r.1
, r.2
, n.1
, n.2
).
Returns an object of class comptest.cor
with following entries:
call | function call |
dat | data.frame with x, y and z (if available) |
spec | specification of function arguments |
res | list with results depending on the analysis (independent of dependent samples), i.e., z (test statistic), pval (significance value), r.xy, r.xz, r.yz, r.1, r.2, diff (difference), n, n.1, n.1, lower (lower limit of CI), upper (upper limit of CI) |
Takuya Yanagida takuya.yanagida@univie.ac.at,
Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS. New York: John Wiley & Sons.
Zou, G. Y. (2007). Toward using confidence intervals to compare correlation. Psychological Methods, 12, 399-413.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | # Dependent samples: Generate random data
x <- c(3, 2, 2, 3, 7, 8, 5, 9)
y <- c(2, 4, 1, 5, 7, 3, 6, 7)
z <- c(1, 4, 3, 3, 1, 4, 2, 5)
#--------------------------------------
# Dependent samples
# H0: rho.xy == rho.xz, H1: rho.xy != rho.xz
comptest.cor(x, y, z)
#--------------------------------------
# Dependent samples
# H0: rho.xy <= rho.xz, H1: rho.xy > rho.xz
# r.xy = 0.44, r.xz = 0.21. r.yz = 0.20, n = 120
comptest.cor(r.xy = 0.44, r.xz = 0.21, r.yz = 0.20, n = 120,
alternative = "greater")
###
# Independent samples: Generate random data
dat <- data.frame(group = rep(1:2, each = 200),
rbind(sim.cor(200, rho = 0.3),
sim.cor(200, rho = 0.5)))
#--------------------------------------
# Independent samples
# H0: rho.1 == rho.2, H1: rho.1 != rho.2
comptest.cor(x = dat$x, y = dat$y, group = dat$group)
#--------------------------------------
# Independent samples
# H0: rho.1 >= rho.2, H1: rho.1 ! < rho.2
# Group 1: r = 0.32, n = 108
# Group 2: r = 0.56, n = 113
comptest.cor(r.1 = 0.32, n.1 = 108, r.2 = 0.56, n.2 = 113,
alternative = "less")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.