Description Usage Arguments Details Value Author(s) References See Also Examples
This function computes the partial or semipartial correlation coefficient between two vaiables. In addition, this function can test the partial or semipartial correlation coefficient for H0: ρ .p = ρ0, so that any value for ρ0 can be specified.
1 2 3 |
x |
a numeric vector. |
y |
a numeric vector. |
p.xy |
a numeric vector or data.frame, varialbe(s) residualized from x and y. |
p.x |
a numeric vector or data.frame, varialbe(s) residualized only from x. |
p.y |
a numeric vector or data.frame, varialbe(s) residualized only from y. |
sig |
logical: if |
rho0 |
a number indicating ρ0, the value under the null hypothesis. |
alternative |
a character string describing the alternative hypothesis,
must be one of |
reduced |
logical: if |
conf.level |
confidence level of the interval. |
digits |
integer indicating the number of decimal places to be displayed. |
output |
logical: if |
Partial correlation is the correlation of x
and y
while statistically controlling
for third variables specified in the argument p.xy
. These variables are residualized from
x
and y
using (multiple) regression models.
Semipartial correlation is the correlation of x
and y
while statistically controlling
for third variables only for x
(specified in the argument p.x
) or y
(specified
in the argument p.y
). These variables are residualized from x
or y
using a
(multiple) regression model.
Returns an object of class par.cor
with following entries:
call | function call |
dat | list with data for x.resid (x residualized), y.resid (y residualized), x, y, p.xy, p.y, and p.x |
spec | specification of function argument method |
res | list with results, i.e., t or z (test statistic), df (degree of freedom) pval (significance value), r.p (partial or semipartial correlation coefficient), n (sample size), lower (lower limit of CI), upper (upper limit of CI) |
Takuya Yanagida takuya.yanagida@univie.ac.at,
Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS. New York: John Wiley & Sons.
test.cor
, conf.cor
, comptest.cor
, seqtest.cor
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | dat <- data.frame(x = c(4, 6, 8, 8, 9, 4),
y = c(3, 7, 9, 8, 9, 3),
z = c(1, 3, 4, 4, 5, 2))
#--------------------------------------
# Partial correlation
par.cor(dat$x, dat$y, p.xy = dat$z)
#--------------------------------------
# Semipartial correlation
# remove z from x
par.cor(dat$x, dat$y, p.x = dat$z)
#--------------------------------------
# Semipartial correlation
# remove z from y
par.cor(dat$x, dat$y, p.y = dat$y)
#--------------------------------------
# Partial correlation: Two-sided test
# H0: rho.p == 0, H1: rho.p != 0
par.cor(dat$x, dat$y, p.xy = dat$z, sig = TRUE)
#--------------------------------------
# Partial correlation: One-sided test
# H0: rho.p <= 0.2, H1: rho.p > 0.2
par.cor(dat$x, dat$y, p.xy = dat$z, sig = TRUE,
rho0 = 0.4, alternative = "less")
|
|---------------------------------------------------------|
| miscor 0.1-1 (2017-04-02) |
| Miscellaneous Functions for the Correlation Coefficient |
|---------------------------------------------------------|
[1] 0.6631337
[1] 0.2213242
[1] -0.1541175
Statistical test for the partial correlation coefficient
H0: rho.p == 0 versus H1: rho.p != 0
t = 1.772, df = 4, p-value = 0.1511
Sample estimate r.p: 0.663
Two-sided 95% CI: [-0.321, 0.959]
Statistical test for the partial correlation coefficient
H0: rho.p >= 0.4 versus H1: rho.p < 0.4
z = 0.580, p-value = 1.0000
Sample estimate r.p: 0.663
One-sided 95% CI: [-1.000, 0.941]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.