View source: R/delete_censoring.R
delete_MNAR_censoring | R Documentation |
Create missing not at random (MNAR) values using a censoring mechanism in a data frame or a matrix
delete_MNAR_censoring( ds, p, cols_mis, n_mis_stochastic = FALSE, where = "lower", sorting = TRUE, miss_cols )
ds |
A data frame or matrix in which missing values will be created. |
p |
A numeric vector with length one or equal to length |
cols_mis |
A vector of column names or indices of columns in which missing values will be created. |
n_mis_stochastic |
Logical, should the number of missing values be
stochastic? If |
where |
Controls where missing values are created; one of "lower", "upper" or "both" (see details). |
sorting |
Logical; should sorting be used or a quantile as a threshold. |
miss_cols |
Deprecated, use |
The functions delete_MNAR_censoring
and delete_MAR_censoring
are sisters. The only difference between these two functions is the column that controls the generation of missing values. In delete_MAR_censoring
a separate column cols_ctrl[i]
controls the generation of missing values in cols_mis[i]
. In contrast, in delete_MNAR_censoring
the generation of missing values in cols_mis[i]
is controlled by cols_mis[i]
itself. All other aspects are identical for both functions. Therefore, further details can be found in delete_MAR_censoring
.
An object of the same class as ds
with missing values.
Santos, M. S., Pereira, R. C., Costa, A. F., Soares, J. P., Santos, J., & Abreu, P. H. (2019). Generating Synthetic Missing Data: A Review by Missing Mechanism. IEEE Access, 7, 11651-11667
delete_MAR_censoring
Other functions to create MNAR:
delete_MNAR_1_to_x()
,
delete_MNAR_one_group()
,
delete_MNAR_rank()
ds <- data.frame(X = 1:20, Y = 101:120) delete_MNAR_censoring(ds, 0.2, "X")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.