View source: R/evaluate_imputation_parameters.R
evaluate_imputation_parameters | R Documentation |
Compares estimated parameters after imputation to true parameters or estimates based on the original dataset
evaluate_imputation_parameters( ds_imp, ds_orig = NULL, pars_true = NULL, parameter = "mean", criterion = "RMSE", cols_which = seq_len(ncol(ds_imp)), tolerance = sqrt(.Machine$double.eps), ..., imp_ds, true_pars, which_cols )
ds_imp |
A data frame or matrix with imputed values. |
ds_orig |
A data frame or matrix with original (true) values. |
pars_true |
True parameters, normally a vector or a matrix. |
parameter |
A string specifying the estimated parameters for comparison. |
criterion |
A string specifying the used criterion for comparing the imputed and original values. |
cols_which |
Indices or names of columns used for evaluation. |
tolerance |
Numeric, only used for |
... |
Further arguments passed to the function for parameter estimation. |
imp_ds |
Deprecated, renamed to |
true_pars |
Deprecated, renamed to |
which_cols |
Deprecated, renamed to |
Either ds_orig
or pars_true
must be supplied and the
other one must be NULL
(default: both are NULL
, just supply
one, see examples). The following parameter
s are implemented:
"mean", "median", "var", "sd", "quantile", "cov", "cov_only", cor", "cor_only".
Some details follow:
"var", "cov" and "cov_only": For "var" only the variances of the columns (the diagonal elements of the covariance matrix) are compared. For "cov" the whole covariance matrix is compared. For "cov_only" only the upper triangle (excluding the diagonal) of the covariance matrix is compared.
"cor", "cor_only": For "cor" the whole correlation matrix is compared. For "cor_only" only the upper triangle (excluding the diagonal) of the correlation matrix is compared.
"quantile": the quantiles can be set via the additional
argument probs
(see examples). Otherwise, the default quantiles from
quantile
will be used.
The argument cols_which
allows the selection of columns for comparison
(see examples). If pars_true
is used, it is assumed that only relevant
parameters are supplied (see examples).
Possible choices for the argument criterion
are documented in
evaluate_imputed_values
A numeric vector of length one.
Cetin-Berber, D. D., Sari, H. I., & Huggins-Manley, A. C. (2019). Imputation Methods to Deal With Missing Responses in Computerized Adaptive Multistage Testing. Educational and psychological measurement, 79(3), 495-511.
Other evaluation functions:
evaluate_imputed_values()
,
evaluate_parameters()
# only ds_orig known ds_orig <- data.frame(X = 1:10, Y = 101:101) ds_imp <- impute_mean(delete_MCAR(ds_orig, 0.4)) evaluate_imputation_parameters(ds_imp, ds_orig = ds_orig) # true parameters known ds_orig <- data.frame(X = rnorm(100), Y = rnorm(100, mean = 10)) ds_imp <- impute_mean(delete_MCAR(ds_orig, 0.3)) evaluate_imputation_parameters(ds_imp, pars_true = c(0, 10), parameter = "mean") evaluate_imputation_parameters(ds_imp, pars_true = c(1, 1), parameter = "var") # set quantiles evaluate_imputation_parameters(ds_imp, pars_true = c(qnorm(0.3), qnorm(0.3, mean = 10)), parameter = "quantile", probs = 0.3 ) # compare only column Y evaluate_imputation_parameters(ds_imp, pars_true = c(Y = 10), parameter = "mean", cols_which = "Y" )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.