plotly_FDR | R Documentation |
plotly
This is an updated version of plotFDR
. For more technical details, please refer to plotFDR
.
plotly_FDR(post1, post2=NULL, lg1="FDR 1", lg2=NULL, compH0=1, alpha=0.1, complete.data =NULL, pctfdr=0.3, col = NULL, width = 3 , title = NULL , title.size = 15 , title.x = 0.5 , title.y = 0.95, xlab = "Index" , xlab.size = 15 , xtick.size = 15, ylab = "Probability" , ylab.size = 15 , ytick.size = 15, legend.text = "" , legend.text.size = 15 , legend.size = 15)
post1 |
The matrix of posterior probabilities from objects such as the output
from |
post2 |
A second object like |
lg1 |
Text describing the FDR estimate in |
lg2 |
Text describing the FDR estimate in |
compH0 |
The component indicator associated to the null hypothesis H0,
normally 1 since it is defined in this way in |
alpha |
The target FDR level; the index at which the FDR estimate crosses the horizontal line for level |
complete.data |
An array with n lines and 2 columns, with the component indicator in column 1 and the p-values in column 2, sorted by p-values. |
pctfdr |
The level up to which the FDR is plotted, i.e. the scale of the vertical axis. |
col |
Color of traces. |
width |
Width of traces. |
title |
Text of the main title. |
title.size |
Size of the main title. |
title.x |
Horsizontal position of the main title. |
title.y |
Vertical posotion of the main title. |
xlab |
Label of X-axis. |
xlab.size |
Size of the lable of X-axis. |
xtick.size |
Size of tick lables of X-axis. |
ylab |
Label of Y-axis. |
ylab.size |
Size of the lable of Y-axis. |
ytick.size |
Size of tick lables of Y-axis. |
legend.text |
Title of legend. |
legend.text.size |
Size of the legend title. |
legend.size |
Size of legend. |
A plot of one or two FDR estimates, with the true FDR if available
Didier Chauveau
Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. Large-scale simultaneous hypothesis testing in monitoring carbon content from French soil database – A semi-parametric mixture approach, Geoderma 219-220 (2014), 117-124.
spEMsymlocN01
, plotFDR
## Probit transform of p-values ## from a Beta-Uniform mixture model ## comparion of parametric and semiparametric EM fit ## Note: in actual situations n=thousands set.seed(50) n=300 # nb of multiple tests m=2 # 2 mixture components a=c(1,0.1); b=c(1,1); lambda=c(0.6,0.4) # parameters z=sample(1:m, n, rep=TRUE, prob = lambda) p <- rbeta(n, shape1 = a[z], shape2 = b[z]) # p-values o <- order(p) cpd <- cbind(z,p)[o,] # sorted complete data, z=1 if H0, 2 if H1 p <- cpd[,2] # sorted p-values y <- qnorm(p) # probit transform of the pvalues # gaussian EM fit with component 1 constrained to N(0,1) s1 <- normalmixEM(y, mu=c(0,-4), mean.constr = c(0,NA), sd.constr = c(1,NA)) s2 <- spEMsymlocN01(y, mu0 = c(0,-3)) # spEM with N(0,1) fit plotly_FDR(s1$post, s2$post, lg1 = "normalmixEM", lg2 = "spEMsymlocN01", complete.data = cpd) # with true FDR computed from z
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.