View source: R/plotly_post.beta.R
plotly_post.beta | R Documentation |
plotly
Returns a 2x2 matrix of plots summarizing the posterior intercept and slope terms in a mixture of random effects regression with arbitrarily many components.
plotly_post.beta(y, x, p.beta, p.z, cex = 6,lwd=1, title.size = 15, xlab.size = 15 , xtick.size = 15, ylab.size = 15 , ytick.size = 15, col.data = "#1f77b4", col.comp = NULL)
y |
A list of N response trajectories with (possibly) varying dimensions of length n_i. |
x |
A list of N predictor values of dimension n_i. Each trajectory in y has its own design vector. |
p.beta |
A list of N 2xk matrices giving the posterior intercept and slope values from the output of an EM algorithm. |
p.z |
An Nxk matrix of posterior membership probabilities from the output of an EM algorithm. |
cex |
Size of dots of posterior Coefficients. |
lwd |
Width of lines. |
title.size |
Size of the main title. |
xlab.size |
Size of the lable of X-axis. |
xtick.size |
Size of tick lables of X-axis. |
ylab.size |
Size of the lable of Y-axis. |
ytick.size |
Size of tick lables of Y-axis. |
col.data |
Color of original data points. |
col.comp |
Color of points and lines of components. Number of colors specified needs to be consistent with number of components. |
This is primarily used for within plot.mixEM
.
Plots returned.
Young, D. S. and Hunter, D. R. (2015) Random Effects Regression Mixtures for Analyzing Infant Habituation, Journal of Applied Statistics, 42(7), 1421–1441.
regmixEM.mixed
, plot.mixEM
, post.beta
data(RanEffdata) set.seed(100) x <- lapply(1:length(RanEffdata), function(i) matrix(RanEffdata[[i]][, 2:3], ncol = 2)) x <- x[1:20] y <- lapply(1:length(RanEffdata), function(i) matrix(RanEffdata[[i]][, 1], ncol = 1)) y <- y[1:20] lambda <- c(0.45, 0.55) mu <- matrix(c(0, 4, 100, 12), 2, 2) sigma <- 2 R <- list(diag(1, 2), diag(1, 2)) em.out <- regmixEM.mixed(y, x, sigma = sigma, arb.sigma = FALSE, lambda = lambda, mu = mu, R = R, addintercept.random = FALSE, epsilon = 1e-02, verb = TRUE) x.1 = em.out$x n = sum(sapply(x.1, nrow)) x.1.sum = sum(sapply(1:length(x.1), function(i) length(x.1[[i]][,1]))) if (x.1.sum == n) { x = lapply(1:length(x.1), function(i) matrix(x.1[[i]][,-1], ncol = 1)) } else { x = x.1 } plotly_post.beta(x = x, y = em.out$y, p.beta = em.out$posterior.beta, p.z = em.out$posterior.z)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.