plotly_mixEM | R Documentation |
mixEM
function using plotly
This is an updated version of plot.mixEM
. For more technical details, please refer to plot.mixEM
.
plotly_mixEM(x, loglik = TRUE, density = FALSE, xlab1="Iteration", xlab1.size=15 , xtick1.size=15, ylab1="Log-Likelihood", ylab1.size=15 , ytick1.size=15, title1="Observed Data Log-Likelihood", title1.size=15, title1.x = 0.5,title1.y=0.95, col1="#1f77b4", lwd1=3, cex1=6, xlab2=NULL, xlab2.size=15 , xtick2.size=15, ylab2=NULL, ylab2.size=15 , ytick2.size=15, title2=NULL, title2.size=15, title2.x = 0.5,title2.y=0.95, col.hist = "#1f77b4", col2=NULL, lwd2=3, cex2=6, alpha = 0.05, marginal = FALSE)
x |
An object of class |
loglik |
If TRUE, a plot of the log-likelihood versus the EM iterations is given. |
density |
Graphics pertaining to certain mixture models. The details are given below. |
xlab1 |
Label of x-axis to be passed to the loglikelihood plot. Trying to change these parameters using |
xlab1.size |
Font of |
xtick1.size |
Font of tick labels of x-axis to be passed to the loglikelihood plot. |
ylab1 |
Label of y-axis to be passed to the loglikelihood plot. Trying to change these parameters using |
ylab1.size |
Font of |
ytick1.size |
Font of tick labels of y-axis to be passed to the loglikelihood plot. |
title1 |
Title to be passed to the loglikelihood plot. |
title1.size |
Tile size of the loglikelihood plot. |
title1.x |
Horizontal position of the loglikelihood plot. |
title1.y |
Verticle position of the loglikelihood plot. |
col1 |
Color of the loglikelihood plot. |
lwd1 |
Width of the density curve of the loglikelihood plot. |
cex1 |
Dot size of the loglikelihood plot. |
xlab2 |
Label of x-axis to be passed to the density plot. Trying to change these parameters using |
xlab2.size |
Font of |
xtick2.size |
Font of tick labels of x-axis to be passed to the density plot. |
ylab2 |
Label of y-axis to be passed to the density plot. Trying to change these parameters using |
ylab2.size |
Font of |
ytick2.size |
Font of tick labels of y-axis to be passed to the density plot. |
title2 |
Title to be passed to the density plot. |
title2.size |
Tile size of the density plot. |
title2.x |
Horizontal position of the density plot. |
title2.y |
Verticle position of the density plot. |
col2 |
Color of the density plot. |
lwd2 |
Width of the density curve of the density plot. |
cex2 |
Dot size of the density plot. |
col.hist |
Color of the histogram of the density plot |
alpha |
A vector of significance levels when constructing confidence ellipses and confidence bands for the mixture of multivariate normals and mixture of regressions cases, respectively. The default is 0.05 |
marginal |
If |
A plot of the output of mixEM
function is presented depends on output type.
post.beta
## Not run: ## EM output for data generated from a 2-component binary logistic regression model. beta <- matrix(c(-10, .1, 20, -.1), 2, 2) x <- runif(500, 50, 250) x1 <- cbind(1, x) xbeta <- x1 w <- rbinom(500, 1, .3) y <- w*rbinom(500, size = 1, prob = (1/(1+exp(-xbeta[, 1]))))+ (1-w)*rbinom(500, size = 1, prob = (1/(1+exp(-xbeta[, 2])))) out.2 <- logisregmixEM(y, x, beta = beta, lambda = c(.3, .7), verb = TRUE, epsilon = 1e-01) plotly_mixEM(out.2 , col2 = c("red" , "green") , density = TRUE) ## Fitting randomly generated data with a 2-component location mixture of bivariate normals. set.seed(100) x.1 <- rmvnorm(40, c(0, 0)) x.2 <- rmvnorm(60, c(3, 4)) X.1 <- rbind(x.1, x.2) mu <- list(c(0, 0), c(3, 4)) out.1 <- mvnormalmixEM(X.1, arbvar = FALSE, mu = mu, epsilon = 1e-02) plotly_mixEM(out.1 , col2 = c("brown" , "blue") , alpha = c(0.01 , 0.05 , 0.1), density = TRUE , marginal = FALSE) ## Fitting randomly generated data with a 2-component scale mixture of bivariate normals. x.3 <- rmvnorm(40, c(0, 0), sigma = matrix(c(200, 1, 1, 150), 2, 2)) x.4 <- rmvnorm(60, c(0, 0)) X.2 <- rbind(x.3, x.4) lambda <- c(0.40, 0.60) sigma <- list(diag(1, 2), matrix(c(200, 1, 1, 150), 2, 2)) out.2 <- mvnormalmixEM(X.2, arbmean = FALSE, sigma = sigma, lambda = lambda, epsilon = 1e-02) plotly_mixEM(out.1 , col2 = c("brown" , "blue") , alpha = c(0.01 , 0.05 , 0.1), density = TRUE , marginal = TRUE) ## EM output for simulated data from 2-component mixture of random effects. data(RanEffdata) set.seed(100) x <- lapply(1:length(RanEffdata), function(i) matrix(RanEffdata[[i]][, 2:3], ncol = 2)) x <- x[1:20] y <- lapply(1:length(RanEffdata), function(i) matrix(RanEffdata[[i]][, 1], ncol = 1)) y <- y[1:20] lambda <- c(0.45, 0.55) mu <- matrix(c(0, 4, 100, 12), 2, 2) sigma <- 2 R <- list(diag(1, 2), diag(1, 2)) em.out <- regmixEM.mixed(y, x, sigma = sigma, arb.sigma = FALSE, lambda = lambda, mu = mu, R = R, addintercept.random = FALSE, epsilon = 1e-02, verb = TRUE) plotly_mixEM(em.out , col2 = c("gold" , "purple") , density = TRUE , lwd2 = 1 , cex2 =9) ## Analyzing the Old Faithful geyser data with a 2-component mixture of normals. data(faithful) attach(faithful) set.seed(100) out <- normalmixEM(waiting, arbvar = FALSE, verb = TRUE, epsilon = 1e-04) plotly_mixEM(out, density = TRUE , col2 = c("gold" , "purple")) ## EM output for the water-level task data set. data(Waterdata) set.seed(100) water <- t(as.matrix(Waterdata[,3:10])) em.out <- repnormmixEM(water, k = 2, verb = TRUE, epsilon = 1e-03) plotly_mixEM(em.out, density = TRUE , col2 = c("gold" , "purple")) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.