Nothing
#' Stated preference data for the choice of electricity suppliers
#'
#' A sample of 2308 households in the United States
#'
#' @name Electricity
#' @docType data
#' @format A dataframe containing :
#'
#' - choice: the choice of the individual, one of 1, 2, 3, 4,
#' - id: the individual index,
#' - pfi: fixed price at a stated cents per kWh, with the price
#' varying over suppliers and experiments, for scenario i=(1, 2, 3,
#' 4),
#' - cli: the length of contract that the supplier offered, in years
#' (such as 1 year or 5 years.) During this contract period, the
#' supplier guaranteed the prices and the buyer would have to pay a
#' penalty if he/she switched to another supplier. The supplier could
#' offer no contract in which case either side could stop the
#' agreement at any time. This is recorded as a contract length of 0,
#' - loci: is the supplier a local company,
#' - wki: is the supplier a well-known company,
#' - todi: a time-of-day rate under which the price is 11 cents per
#' kWh from 8am to 8pm and 5 cents per kWh from 8pm to 8am. These TOD
#' prices did not vary over suppliers or experiments: whenever the
#' supplier was said to offer TOD, the prices were stated as above.
#' - seasi: a seasonal rate under which the price is 10 cents per kWh
#' in the summer, 8 cents per kWh in the winter, and 6 cents per kWh
#' in the spring and fall. Like TOD rates, these prices did not vary.
#' Note that the price is for the electricity only, not transmission
#' and distribution, which is supplied by the local regulated utility.
#'
#' @source
#' [Kenneth Train's home page](https://elsa.berkeley.edu/~train/).
#' @references
#' \insertRef{HUBE:TRAI:00}{mlogit}
#'
#' \insertRef{REVE:TRAI:01}{mlogit}
#' @keywords datasets
#' @importFrom Rdpack reprompt
NULL
#' Choice of Fishing Mode
#'
#' A sample of 1182 individuals in the United-States for the choice of
#' 4 alternative fishing modes.
#'
#' @name Fishing
#' @docType data
#' @format A dataframe containing :
#'
#' - mode: recreation mode choice, one of : beach, pier, boat and
#' charter,
#' - price.beach: price for beach mode
#' - price.pier: price for pier mode,
#' - price.boat: price for private boat mode,
#' - price.charter: price for charter boat mode,
#' - catch.beach: catch rate for beach mode,
#' - catch.pier: catch rate for pier mode,
#' - catch.boat: catch rate for private boat mode,
#' - catch.charter: catch rate for charter boat mode,
#' - income: monthly income,
#'
#' @source
#' \insertRef{CAME:TRIV:05}{mlogit}
#' @references
#' \insertRef{HERR:KLIN:99}{mlogit}
#' @keywords datasets
NULL
#' Ranked data for gaming platforms
#'
#' A sample of 91 Dutch individuals
#'
#' The data are also provided in long format (use in this case
#' `data(Game2)`. In this case, the alternative and the choice
#' situation are respectively indicated in the `platform` and
#' `chid` variables.
#'
#' @name Game
#' @aliases Game Game2
#' @docType data
#' @format A dataframe containing :
#'
#' - ch.Platform: where `platform` is one of `Xbox`,
#' `PlayStation`, `PSPortable`, `GameCube`,
#' `GameBoy` and `PC`. This variables contain the ranking of
#' the platforms from 1 to 6,
#' - own.Platform: these 6 variables are dummies which indicate
#' whether the given plaform is already owned by the respondent,
#' - age: the age of the respondent,
#' - hours: hours per week spent on gaming.,
#'
#' @source
#' [Journal of Applied Econometrics data archive](https://wileyonlinelibrary.com/journal/jae/).
#' @references
#' \insertRef{FOK:PAAP:VAND:12}{mlogit}
#' @keywords datasets
NULL
#' Heating and Cooling System Choice in Newly Built Houses in California
#'
#' A sample of 250 Californian households
#'
#' @name HC
#' @docType data
#' @format A dataframe containing :
#'
#' - depvar: heating system, one of `gcc` (gas central heat with
#' cooling), `ecc` (electric central resistence heat with cooling), `erc`
#' (electric room resistence heat with cooling), `hpc` (electric heat
#' pump which provides cooling also), `gc` (gas central heat without
#' cooling), `ec` (electric central resistence heat without cooling), `er`
#' (electric room resistence heat without cooling),
#' - ich.z: installation cost of the heating portion of the
#' system,
#' - icca: installation cost for cooling,
#' - och.z: operating cost for the heating portion of the system,
#' - occa: operating cost for cooling,
#' - income: annual income of the household.
#'
#' @source
#' [Kenneth Train's home page](https://elsa.berkeley.edu/~train/).
#' @keywords datasets
NULL
#' Heating System Choice in California Houses
#'
#' A sample of 900 Californian households#'
#'
#' @name Heating
#' @docType data
#' @format A dataframe containing:
#'
#' - idcase: id,
#' - depvar: heating system, one of gc (gas central), gr (gas room), ec
#' (electric central), er (electric room), hp (heat pump),
#' - ic.z: installation cost for heating system z (defined for the
#' 5 heating systems),
#' - oc.z: annual operating cost for heating system z (defined for
#' the 5 heating systems),
#' - pb.z: ratio oc.z/ic.z ,
#' - income: annual income of the household,
#' - agehed: age of the household head
#' - rooms: numbers of rooms in the house,
#'
#' @source
#' [Kenneth Train's home page](https://elsa.berkeley.edu/~train/).
#' @keywords datasets
NULL
#' Japanese Foreign Direct Investment in European Regions
#'
#' A sample of 452 Japanese production units in Europe
#' #'
#' @name JapaneseFDI
#' @docType data
#' @format A dataframe containing :
#'
#' - firm: the investment id,
#' - country: the country,
#' - region: the region (nuts1 nomenclature),
#' - choice: a dummy indicating the chosen region ,
#' - choice.c: the chosen country,
#' - wage: wage rate in the region,
#' - unemp: unemployment rate in the region,
#' - elig: is the country eligible to european subsidies,
#' - area: the area of the region,
#' - scrate: social charge rate (country level),
#' - ctaxrate: corporate tax rate (country level),
#' - gdp: regional gdp,
#' - harris: harris' market potential,
#' - krugman: krugman's market potential,
#' - domind: domestic industry count,
#' - japind: japan industry count,
#' - network: network count.
#'
#' @references
#' \insertRef{HEAD:MAYE:04}{mlogit}
#' @source kindly provided by Thierry Mayer
#' @keywords datasets
NULL
#' Mode Choice
#'
#' A sample of 453 individuals for 4 transport modes.
#'
#' @name Mode
#' @docType data
#' @format A dataframe containing :
#'
#' - choice: one of car, carpool, bus or rail,
#' - cost.z: cost of mode z,
#' - time.z: time of mode z.
#'
#' @source
#' [Kenneth Train's home page](https://elsa.berkeley.edu/~train/).
#' @keywords datasets
NULL
#' Mode Choice for the Montreal-Toronto Corridor
#'
#' A sample of 3880 travellers for the Montreal-Toronto corridor
#'
#' @name ModeCanada
#' @docType data
#' @format A dataframe containing
#'
#' - case: the individual index,
#' - alt: the alternative, one of train, car, bus and air,
#' - choice: one if the mode is chosen, zero otherwise,
#' - cost: monetary cost,
#' - ivt: in vehicule time,
#' - ovt: out vehicule time,
#' - frequency: frequency,
#' - income: income,
#' - urban: urban,
#' - noalt: the number of alternatives available.
#'
#' @source
#' kindly provided by S. Koppelman
#' @references
#' \insertRef{BHAT:95}{mlogit}
#'
#' \insertRef{KOPP:WEN:00}{mlogit}
#'
#' \insertRef{WEN:KOPP:01}{mlogit}
#' @keywords datasets
#' @examples
#' data("ModeCanada", package = "mlogit")
#' bususers <- with(ModeCanada, case[choice == 1 & alt == "bus"])
#' ModeCanada <- subset(ModeCanada, ! case %in% bususers)
#' ModeCanada <- subset(ModeCanada, noalt == 4)
#' ModeCanada <- subset(ModeCanada, alt != "bus")
#' ModeCanada$alt <- ModeCanada$alt[drop = TRUE]
#' KoppWen00 <- mlogit.data(ModeCanada, shape='long', chid.var = 'case',
#' alt.var = 'alt', choice = 'choice',
#' drop.index = TRUE)
#' pcl <- mlogit(choice ~ freq + cost + ivt + ovt, KoppWen00, reflevel = 'car',
#' nests = 'pcl', constPar = c('iv:train.air'))
#'
NULL
#' Technologies to reduce NOx emissions
#'
#' A sample of 632 American production units
#'
#' @name NOx
#' @docType data
#' @format A dataframe containing:
#'
#' - chid: the plant id,
#' - alt: the alternative,
#' - id: the owner id,
#' - choice: the
#' chosen alternative,
#' - available: a dummy indicating that the alternative is
#' available,
#' - env: the regulatory environment, one of `'regulated'`,
#' `'deregulated'` and `'public'`,
#' - post: dummy for post-combustion polution control technology,
#' - cm: dummy for combustion modification technology,
#' - lnb: dummy for low NOx burners technology,
#' - age: age of the plant (in deviation from the mean age).,
#' - vcost: variable cost,
#' - kcost: capital cost.
#'
#' @references
#' \insertRef{FOWL:10}{mlogit}
#' @source
#' [American Economic Association data archive](https://www.aeaweb.org/aer/).
#' @keywords datasets
NULL
#' Risky Transportation Choices
#'
#' 1793 choices by 561 individuals of a transport mode at Freetwon
#' airport
#'
#'
#' @name RiskyTransport
#' @docType data
#' @format A dataframe containing:
#'
#' - id: individual id,
#' - choice: 1 for the chosen mode,
#' - mode: one of `Helicopter`,`WaterTaxi`, `Ferry,
#' and `Hovercraft`,
#' - cost: the generalised cost of the transport mode,
#' - risk: the fatality rate, numbers of death per 100,000 trips,
#' - weight: weights,
#' - seats: ,
#' - noise: ,
#' - crowdness: ,
#' - convloc: ,
#' - clientele: ,
#' - chid: choice situation id,
#' - african: `yes` if born in Africa, `no` otherwise,
#' - lifeExp: declared life expectancy,
#' - dwage: declared hourly wage,
#' - iwage: imputed hourly wage,
#' - educ: level of education, one of `low` and `high`,
#' - fatalism: self-ranking of the degree of fatalism,
#' - gender: gender, one of `female` and `male`,
#' - age: age,
#' - haveChildren: `yes` if the traveler has children,
#' `no` otherwise,
#' - swim: `yes` if the traveler knows how to swim, `no,
#' otherwise.
#'
#' @references
#' \insertRef{LEON:MIGU:17}{mlogit}
#' @source
#' [American Economic Association data archive](https://www.aeaweb.org/aer/).
#' @keywords datasets
NULL
# Gianmarco, Leon and Edward Miguel (2017)
# "Risky Transportation Choices and the Value of a Statistical Life",
# *American Economic Journal: Applied Economics*, **9(1)**,
# 202-28.
#' Stated Preferences for Train Traveling
#'
#' A sample of 235 Dutch individuals facing 2929 choice situations
#'
#' @name Train
#' @docType data
#' @format A dataframe containing:
#'
#' - id: individual identifient,
#' - choiceid: choice identifient,
#' - choice: one of 'A' or 'B',
#' - price_z: price of proposition z (z = 'A', 'B') in cents of
#' guilders,
#' - time_z: travel time of proposition z (z = 'A', 'B') in
#' minutes,
#' - comfort_z: comfort of proposition z (z = 'A', 'B'), 0, 1 or
#' 2 in decreasing comfort order,
#' - change_z: number of changes for proposition z (z = 'A', 'B').
#' @source
#' [Journal of Applied Econometrics data archive](https://wileyonlinelibrary.com/journal/jae/).
#'
#' @references
#' \insertRef{BENA:BOLD:BRAD:93}{mlogit}
#'
#' \insertRef{MEIJ:ROUW:06}{mlogit}
#' @keywords datasets
NULL
#' Choice of Brand for Crakers
#'
#' a sample of 3292 individualscross-section
#'
#' @name Cracker
#' @docType data
#' @format A dataframe containing :
#'
#' - id: individuals identifiers,
#' - choice: one of sunshine, keebler, nabisco, private,
#' - disp.z: is there a display for brand z?
#' - feat.z: is there a newspaper feature advertisement for brand z?
#' - price.z: price of brand z.
#'
#' @source
#' [Journal of Business Economics and Statistics web site](https://www.amstat.org).
#'
#' @references
#' \insertRef{DIPA:NAUF:CHIN:94}{mlogit}
#'
#' \insertRef{PAAP:FRAN:00}{mlogit}
#' @keywords datasets
NULL
#' mlogit package: estimation of random utility discrete choice models
#' by maximum likelihood
#'
#' mlogit provides a model description interface (enhanced
#' formula-data), a very versatile estimation function and a testing
#' infrastructure to deal with random utility models.
#'
#' @name mlogit-package
#' @docType package
#' @details For a gentle and comprehensive introduction to the
#' package, see the package's vignettes.
#'
#' \insertRef{CROI:20}{mlogit}
#'
#' \insertRef{TRAI:09}{mlogit}
NULL
#' Choice of Brand for Catsup
#'
#' a sample of 2798 individuals
#'
#' @name Catsup
#' @docType data
#' @format A dataframe containing :
#'
#' - id: individuals identifiers,
#' - choice: one of heinz41, heinz32, heinz28, hunts32,
#' - disp.z: is there a display for brand z ?
#' - feat.z: is there a newspaper feature advertisement for brand z?
#' - price.z: price of brand z.
#' @source
#' [Journal of Business Economics and Statistics web site](https://www.amstat.org).
#'
#' @references
#' \insertRef{DIPA:NAUF:CHIN:94}{mlogit}
#' @keywords datasets
NULL
#' Stated Preferences for Car Choice
#'
#' a sample of 4654 individuals
#' @name Car
#' @docType data
#' @format A dataframe containing :
#'
#' - choice: choice of a vehicule amoung 6 propositions,
#' - college: college education?,
#' - hsg2: size of household greater than 2?
#' - coml5: commulte lower than 5 miles a day?,
#' - typez: body type, one of regcar (regular car), sportuv (sport utility vehicule), sportcar, stwagon (station wagon), truck, van, for each proposition z from 1 to 6,
#' - fuelz: fuel for proposition z, one of gasoline, methanol, cng (compressed natural gas), electric.,
#' - pricez: price of vehicule divided by the logarithme of income,
#' - rangez: hundreds of miles vehicule can travel between refuelings/rechargings,
#' - accz: acceleration, tens of seconds required to reach 30 mph from stop,
#' - speedz: highest attainable speed in hundreds of mph,
#' - pollutionz: tailpipe emissions as fraction of those for new gas vehicule,
#' - sizez: 0 for a mini, 1 for a subcompact, 2 for a compact and 3 for a mid--size or large vehicule,
#' - spacez: fraction of luggage space in comparable new gas vehicule,
#' - costz: cost per mile of travel (tens of cents) : home recharging for electric vehicule, station refueling otherwise,
#' - stationz: fraction of stations that can refuel/recharge vehicule.
#'
#' @source
#' [Journal of Applied Econometrics data archive](https://wileyonlinelibrary.com/journal/jae/).
#'
#' @references
#' \insertRef{MCFA:TRAI:00}{mlogit}
#'
#' @keywords datasets
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.