README.md

mlr3cluster

Package website: release \| dev

Cluster analysis for mlr3.

r-cmd-check CRAN
status StackOverflow Mattermost

mlr3cluster is an extension package for cluster analysis within the mlr3 ecosystem. It is a successor of clustering capabilities of mlr2.

Installation

Install the last release from CRAN:

install.packages("mlr3cluster")

Install the development version from GitHub:

# install.packages("pak")
pak::pak("mlr-org/mlr3cluster")

Feature Overview

The current version of mlr3cluster contains:

Also, the package is integrated with mlr3viz which enables you to create great visualizations with just one line of code!

Cluster Analysis

Cluster Learners

| Key | Label | Packages | |:---|:---|:---| | clust.MBatchKMeans | Mini Batch K-Means | ClusterR | | clust.SimpleKMeans | K-Means (Weka) | RWeka | | clust.agnes | Agglomerative Hierarchical Clustering | cluster | | clust.ap | Affinity Propagation Clustering | apcluster | | clust.bico | BICO Clustering | stream | | clust.birch | BIRCH Clustering | stream | | clust.cmeans | Fuzzy C-Means Clustering Learner | e1071 | | clust.cobweb | Cobweb Clustering | RWeka | | clust.dbscan | Density-Based Clustering | dbscan | | clust.dbscan_fpc | Density-Based Clustering with fpc | fpc | | clust.diana | Divisive Hierarchical Clustering | cluster | | clust.em | Expectation-Maximization Clustering | RWeka | | clust.fanny | Fuzzy Analysis Clustering | cluster | | clust.featureless | Featureless Clustering | | | clust.ff | Farthest First Clustering | RWeka | | clust.hclust | Agglomerative Hierarchical Clustering | stats | | clust.hdbscan | HDBSCAN Clustering | dbscan | | clust.kkmeans | Kernel K-Means | kernlab | | clust.kmeans | K-Means | stats, clue | | clust.mclust | Gaussian Mixture Models Clustering | mclust | | clust.meanshift | Mean Shift Clustering | LPCM | | clust.optics | OPTICS Clustering | dbscan | | clust.pam | Partitioning Around Medoids | cluster | | clust.xmeans | X-means | RWeka |

Cluster Measures

| Key | Label | Packages | |:---|:---|:---| | clust.ch | Calinski Harabasz | fpc | | clust.dunn | Dunn | fpc | | clust.silhouette | Silhouette | cluster | | clust.wss | Within Sum of Squares | fpc |

Example

library(mlr3)
library(mlr3cluster)

task = tsk("usarrests")
learner = lrn("clust.kmeans")
learner$train(task)
prediction = learner$predict(task = task)

More Resources

Check out the blogpost for a more detailed introduction to the package. Also, mlr3book has a section on clustering.

Future Plans

If you have any questions, feedback or ideas, feel free to open an issue here.



Try the mlr3cluster package in your browser

Any scripts or data that you put into this service are public.

mlr3cluster documentation built on April 4, 2025, 2 a.m.