mlr_learners_clust.cobweb: Cobweb Clustering Learner

mlr_learners_clust.cobwebR Documentation

Cobweb Clustering Learner

Description

A LearnerClust for Cobweb clustering implemented in RWeka::Cobweb(). The predict method uses RWeka::predict.Weka_clusterer() to compute the cluster memberships for new data.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.cobweb")
lrn("clust.cobweb")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, RWeka

Parameters

Id Type Default Range
A numeric 1 [0, \infty)
C numeric 0.002 [0, \infty)
S integer 42 [1, \infty)

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCobweb

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClustCobweb$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClustCobweb$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.

Fisher, H D (1987). “Knowledge acquisition via incremental conceptual clustering.” Machine learning, 2, 139–172.

Gennari, H J, Langley, Pat, Fisher, Doug (1989). “Models of incremental concept formation.” Artificial intelligence, 40(1-3), 11–61.

See Also

Other Learner: mlr_learners_clust.MBatchKMeans, mlr_learners_clust.SimpleKMeans, mlr_learners_clust.agnes, mlr_learners_clust.ap, mlr_learners_clust.bico, mlr_learners_clust.birch, mlr_learners_clust.cmeans, mlr_learners_clust.dbscan, mlr_learners_clust.dbscan_fpc, mlr_learners_clust.diana, mlr_learners_clust.em, mlr_learners_clust.fanny, mlr_learners_clust.featureless, mlr_learners_clust.ff, mlr_learners_clust.hclust, mlr_learners_clust.hdbscan, mlr_learners_clust.kkmeans, mlr_learners_clust.kmeans, mlr_learners_clust.mclust, mlr_learners_clust.meanshift, mlr_learners_clust.optics, mlr_learners_clust.pam, mlr_learners_clust.xmeans

Examples


# Define the Learner and set parameter values
learner = lrn("clust.cobweb")
print(learner)

# Define a Task
task = tsk("usarrests")

# Train the learner on the task
learner$train(task)

# Print the model
print(learner$model)

# Make predictions for the task
prediction = learner$predict(task)

# Score the predictions
prediction$score(task = task)


mlr3cluster documentation built on Nov. 19, 2025, 5:08 p.m.