| mlr_learners_clust.birch | R Documentation |
BIRCH (Balanced Iterative Reducing Clustering using Hierarchies) clustering.
Calls stream::DSC_BIRCH() from stream.
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.birch")
lrn("clust.birch")
Task type: “clust”
Predict Types: “partition”
Feature Types: “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, stream
| Id | Type | Default | Range |
| threshold | numeric | - | [0, \infty) |
| branching | integer | - | [1, \infty) |
| maxLeaf | integer | - | [1, \infty) |
| maxMem | integer | 0 | [0, \infty) |
| outlierThreshold | numeric | 0.25 | (-\infty, \infty) |
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustBIRCH
new()Creates a new instance of this R6 class.
LearnerClustBIRCH$new()
clone()The objects of this class are cloneable with this method.
LearnerClustBIRCH$clone(deep = FALSE)
deepWhether to make a deep clone.
Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1996). “BIRCH: An Efficient Data Clustering Method for Very Large Databases.” ACM sigmod record, 25(2), 103–114.
Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1997). “BIRCH: A new data clustering algorithm and its applications.” Data Mining and Knowledge Discovery, 1, 141–182.
Hahsler M, Bolaños M, Forrest J (2017). “Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R.” Journal of Statistical Software, 76(14), 1–50. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v076.i14")}.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
Dictionary of Learners: mlr3::mlr_learners
as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
# Define the Learner and set parameter values
learner = lrn("clust.birch")
print(learner)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.