| mlr_learners_clust.fanny | R Documentation |
A LearnerClust for fuzzy clustering implemented in cluster::fanny().
cluster::fanny() doesn't have a default value for the number of clusters.
Therefore, the k parameter which corresponds to the number
of clusters here is set to 2 by default.
The predict method copies cluster assignments and memberships
generated for train data. The predict does not work for
new data.
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.fanny")
lrn("clust.fanny")
Task type: “clust”
Predict Types: “partition”, “prob”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, cluster
| Id | Type | Default | Levels | Range |
| k | integer | - | [1, \infty) |
|
| memb.exp | numeric | 2 | [1, \infty) |
|
| metric | character | euclidean | euclidean, manhattan, SqEuclidean | - |
| stand | logical | FALSE | TRUE, FALSE | - |
| maxit | integer | 500 | [0, \infty) |
|
| tol | numeric | 1e-15 | [0, \infty) |
|
| trace.lev | integer | 0 | [0, \infty) |
|
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFanny
new()Creates a new instance of this R6 class.
LearnerClustFanny$new()
clone()The objects of this class are cloneable with this method.
LearnerClustFanny$clone(deep = FALSE)
deepWhether to make a deep clone.
Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
Dictionary of Learners: mlr3::mlr_learners
as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
if (requireNamespace("cluster")) {
learner = mlr3::lrn("clust.fanny")
print(learner)
# available parameters:
learner$param_set$ids()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.