| mlr_learners_clust.dbscan | R Documentation |
DBSCAN (Density-based spatial clustering of applications with noise) clustering.
Calls dbscan::dbscan() from dbscan.
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.dbscan")
lrn("clust.dbscan")
Task type: “clust”
Predict Types: “partition”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3cluster, dbscan
| Id | Type | Default | Levels | Range |
| eps | numeric | - | [0, \infty) |
|
| minPts | integer | 5 | [0, \infty) |
|
| borderPoints | logical | TRUE | TRUE, FALSE | - |
| weights | untyped | - | - | |
| search | character | kdtree | kdtree, linear, dist | - |
| bucketSize | integer | 10 | [1, \infty) |
|
| splitRule | character | SUGGEST | STD, MIDPT, FAIR, SL_MIDPT, SL_FAIR, SUGGEST | - |
| approx | numeric | 0 | (-\infty, \infty) |
|
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCAN
new()Creates a new instance of this R6 class.
LearnerClustDBSCAN$new()
clone()The objects of this class are cloneable with this method.
LearnerClustDBSCAN$clone(deep = FALSE)
deepWhether to make a deep clone.
Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering with R.” Journal of Statistical Software, 91(1), 1–30. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v091.i01")}.
Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, Xu, Xiaowei, others (1996). “A density-based algorithm for discovering clusters in large spatial databases with noise.” In kdd, volume 96 number 34, 226–231.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
Dictionary of Learners: mlr3::mlr_learners
as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
if (requireNamespace("dbscan")) {
learner = mlr3::lrn("clust.dbscan")
print(learner)
# available parameters:
learner$param_set$ids()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.