Package website: release | dev
mlr3fselect is the feature selection package of the mlr3 ecosystem. It selects the optimal feature set for any mlr3 learner. The package works with several optimization algorithms e.g. Random Search, Recursive Feature Elimination, and Genetic Search. Moreover, it can automatically optimize learners and estimate the performance of optimized feature sets with nested resampling. The package is built on the optimization framework bbotk.
There are several section about feature selection in the mlr3book.
The gallery features a collection of case studies and demos about optimization.
The cheatsheet summarizes the most important functions of mlr3fselect.
Install the last release from CRAN:
install.packages("mlr3fselect")
Install the development version from GitHub:
remotes::install_github("mlr-org/mlr3fselect")
We run a feature selection for a support vector machine on the Spam data set.
library("mlr3verse")
tsk("spam")
## <TaskClassif:spam> (4601 x 58): HP Spam Detection
## * Target: type
## * Properties: twoclass
## * Features (57):
## - dbl (57): address, addresses, all, business, capitalAve, capitalLong, capitalTotal,
## charDollar, charExclamation, charHash, charRoundbracket, charSemicolon,
## charSquarebracket, conference, credit, cs, data, direct, edu, email, font, free,
## george, hp, hpl, internet, lab, labs, mail, make, meeting, money, num000, num1999,
## num3d, num415, num650, num85, num857, order, original, our, over, parts, people, pm,
## project, re, receive, remove, report, table, technology, telnet, will, you, your
We construct an instance with the fsi()
function. The instance
describes the optimization problem.
instance = fsi(
task = tsk("spam"),
learner = lrn("classif.svm", type = "C-classification"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20)
)
instance
## <FSelectInstanceBatchSingleCrit>
## * State: Not optimized
## * Objective: <ObjectiveFSelect:classif.svm_on_spam>
## * Terminator: <TerminatorEvals>
We select a simple random search as the optimization algorithm.
fselector = fs("random_search", batch_size = 5)
fselector
## <FSelectorBatchRandomSearch>: Random Search
## * Parameters: batch_size=5
## * Properties: single-crit, multi-crit
## * Packages: mlr3fselect
To start the feature selection, we simply pass the instance to the fselector.
fselector$optimize(instance)
The fselector writes the best hyperparameter configuration to the instance.
instance$result_feature_set
## [1] "address" "addresses" "all" "business"
## [5] "capitalAve" "capitalLong" "capitalTotal" "charDollar"
## [9] "charExclamation" "charHash" "charRoundbracket" "charSemicolon"
## [13] "charSquarebracket" "conference" "credit" "cs"
## [17] "data" "direct" "edu" "email"
## [21] "font" "free" "george" "hp"
## [25] "internet" "lab" "labs" "mail"
## [29] "make" "meeting" "money" "num000"
## [33] "num1999" "num3d" "num415" "num650"
## [37] "num85" "num857" "order" "our"
## [41] "parts" "people" "pm" "project"
## [45] "re" "receive" "remove" "report"
## [49] "table" "technology" "telnet" "will"
## [53] "you" "your"
And the corresponding measured performance.
instance$result_y
## classif.ce
## 0.07042005
The archive contains all evaluated hyperparameter configurations.
as.data.table(instance$archive)
## address addresses all business capitalAve capitalLong capitalTotal charDollar charExclamation
## 1: TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## 2: TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE
## 3: TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
## 4: TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## 5: FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## ---
## 16: FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 17: FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE
## 18: FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE
## 19: TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
## 20: TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE
## 56 variables not shown: [charHash, charRoundbracket, charSemicolon, charSquarebracket, conference, credit, cs, data, direct, edu, ...]
We fit a final model with the optimized feature set to make predictions on new data.
task = tsk("spam")
learner = lrn("classif.svm", type = "C-classification")
task$select(instance$result_feature_set)
learner$train(task)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.