View source: R/CallbackBatchFSelect.R
callback_batch_fselect | R Documentation |
Function to create a CallbackBatchFSelect.
Predefined callbacks are stored in the dictionary mlr_callbacks and can be retrieved with clbk()
.
Feature selection callbacks can be called from different stages of feature selection.
The stages are prefixed with on_*
.
The on_auto_fselector_*
stages are only available when the callback is used in an AutoFSelector.
Start Automatic Feature Selection Start Feature Selection - on_optimization_begin Start FSelect Batch - on_optimizer_before_eval Start Evaluation - on_eval_after_design - on_eval_after_benchmark - on_eval_before_archive End Evaluation - on_optimizer_after_eval End FSelect Batch - on_result - on_optimization_end End Feature Selection - on_auto_fselector_before_final_model - on_auto_fselector_after_final_model End Automatic Feature Selection
See also the section on parameters for more information on the stages. A feature selection callback works with bbotk::ContextBatch and ContextBatchFSelect.
callback_batch_fselect(
id,
label = NA_character_,
man = NA_character_,
on_optimization_begin = NULL,
on_optimizer_before_eval = NULL,
on_eval_after_design = NULL,
on_eval_after_benchmark = NULL,
on_eval_before_archive = NULL,
on_optimizer_after_eval = NULL,
on_result = NULL,
on_optimization_end = NULL,
on_auto_fselector_before_final_model = NULL,
on_auto_fselector_after_final_model = NULL
)
id |
( |
label |
( |
man |
( |
on_optimization_begin |
( |
on_optimizer_before_eval |
( |
on_eval_after_design |
( |
on_eval_after_benchmark |
( |
on_eval_before_archive |
( |
on_optimizer_after_eval |
( |
on_result |
( |
on_optimization_end |
( |
on_auto_fselector_before_final_model |
( |
on_auto_fselector_after_final_model |
( |
When implementing a callback, each function must have two arguments named callback
and context
.
A callback can write data to the state ($state
), e.g. settings that affect the callback itself.
Avoid writing large data the state.
# Write archive to disk
callback_batch_fselect("mlr3fselect.backup",
on_optimization_end = function(callback, context) {
saveRDS(context$instance$archive, "archive.rds")
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.