mlr_fselectors_shadow_variable_search | R Documentation |
Feature selection using the Shadow Variable Search Algorithm. Shadow variable search creates for each feature a permutated copy and stops when one of them is selected.
The feature selection terminates itself when the first shadow variable is selected. It is not necessary to set a termination criterion.
The gallery features a collection of case studies and demos about optimization.
Run a feature selection with Shadow Variable Search.
This FSelector can be instantiated with the associated sugar function fs()
:
fs("shadow_variable_search")
mlr3fselect::FSelector
-> mlr3fselect::FSelectorBatch
-> FSelectorBatchShadowVariableSearch
new()
Creates a new instance of this R6 class.'
FSelectorBatchShadowVariableSearch$new()
optimization_path()
Returns the optimization path.
FSelectorBatchShadowVariableSearch$optimization_path(inst)
inst
(FSelectInstanceBatchSingleCrit)
Instance optimized with FSelectorBatchShadowVariableSearch.
data.table::data.table
clone()
The objects of this class are cloneable with this method.
FSelectorBatchShadowVariableSearch$clone(deep = FALSE)
deep
Whether to make a deep clone.
Thomas J, Hepp T, Mayr A, Bischl B (2017). “Probing for Sparse and Fast Variable Selection with Model-Based Boosting.” Computational and Mathematical Methods in Medicine, 2017, 1–8. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1155/2017/1421409")}.
Wu Y, Boos DD, Stefanski LA (2007). “Controlling Variable Selection by the Addition of Pseudovariables.” Journal of the American Statistical Association, 102(477), 235–243. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/016214506000000843")}.
Other FSelector:
FSelector
,
mlr_fselectors
,
mlr_fselectors_design_points
,
mlr_fselectors_exhaustive_search
,
mlr_fselectors_genetic_search
,
mlr_fselectors_random_search
,
mlr_fselectors_rfe
,
mlr_fselectors_rfecv
,
mlr_fselectors_sequential
# Feature Selection
# retrieve task and load learner
task = tsk("penguins")
learner = lrn("classif.rpart")
# run feature selection on the Palmer Penguins data set
instance = fselect(
fselector = fs("shadow_variable_search"),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
)
# best performing feature subset
instance$result
# all evaluated feature subsets
as.data.table(instance$archive)
# subset the task and fit the final model
task$select(instance$result_feature_set)
learner$train(task)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.