| mlr_learners_classif.ranger | R Documentation | 
Random classification forest.
Calls ranger::ranger() from package ranger.
mtry:
 This hyperparameter can alternatively be set via our hyperparameter mtry.ratio
as mtry = max(ceiling(mtry.ratio * n_features), 1).
Note that mtry and mtry.ratio are mutually exclusive.
num.threads:
 Actual default: 2, using two threads, while also respecting environment variable
R_RANGER_NUM_THREADS, options(ranger.num.threads = N), or options(Ncpus = N), with
precedence in that order.
Adjusted value: 1.
Reason for change: Conflicting with parallelization via future.
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("classif.ranger")
lrn("classif.ranger")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”
Required Packages: mlr3, mlr3learners, ranger
| Id | Type | Default | Levels | Range | 
| always.split.variables | untyped | - | - | |
| class.weights | untyped | NULL | - | |
| holdout | logical | FALSE | TRUE, FALSE | - | 
| importance | character | - | none, impurity, impurity_corrected, permutation | - | 
| keep.inbag | logical | FALSE | TRUE, FALSE | - | 
| max.depth | integer | NULL | [1, \infty) | |
| min.bucket | untyped | 1L | - | |
| min.node.size | untyped | NULL | - | |
| mtry | integer | - | [1, \infty) | |
| mtry.ratio | numeric | - | [0, 1] | |
| na.action | character | na.learn | na.learn, na.omit, na.fail | - | 
| num.random.splits | integer | 1 | [1, \infty) | |
| node.stats | logical | FALSE | TRUE, FALSE | - | 
| num.threads | integer | 1 | [1, \infty) | |
| num.trees | integer | 500 | [1, \infty) | |
| oob.error | logical | TRUE | TRUE, FALSE | - | 
| regularization.factor | untyped | 1 | - | |
| regularization.usedepth | logical | FALSE | TRUE, FALSE | - | 
| replace | logical | TRUE | TRUE, FALSE | - | 
| respect.unordered.factors | character | - | ignore, order, partition | - | 
| sample.fraction | numeric | - | [0, 1] | |
| save.memory | logical | FALSE | TRUE, FALSE | - | 
| scale.permutation.importance | logical | FALSE | TRUE, FALSE | - | 
| seed | integer | NULL | (-\infty, \infty) | |
| split.select.weights | untyped | NULL | - | |
| splitrule | character | gini | gini, extratrees, hellinger | - | 
| verbose | logical | TRUE | TRUE, FALSE | - | 
| write.forest | logical | TRUE | TRUE, FALSE | - | 
mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRanger
new()Creates a new instance of this R6 class.
LearnerClassifRanger$new()
importance()The importance scores are extracted from the model slot variable.importance.
Parameter importance.mode must be set to "impurity", "impurity_corrected", or
"permutation"
LearnerClassifRanger$importance()
Named numeric().
oob_error()The out-of-bag error, extracted from model slot prediction.error.
LearnerClassifRanger$oob_error()
numeric(1).
selected_features()The set of features used for node splitting in the forest.
LearnerClassifRanger$selected_features()
character().
clone()The objects of this class are cloneable with this method.
LearnerClassifRanger$clone(deep = FALSE)
deepWhether to make a deep clone.
Wright, N. M, Ziegler, Andreas (2017). “ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R.” Journal of Statistical Software, 77(1), 1–17. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v077.i01")}.
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1023/A:1010933404324")}.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
Dictionary of Learners: mlr3::mlr_learners
as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner: 
mlr_learners_classif.cv_glmnet,
mlr_learners_classif.glmnet,
mlr_learners_classif.kknn,
mlr_learners_classif.lda,
mlr_learners_classif.log_reg,
mlr_learners_classif.multinom,
mlr_learners_classif.naive_bayes,
mlr_learners_classif.nnet,
mlr_learners_classif.qda,
mlr_learners_classif.svm,
mlr_learners_classif.xgboost,
mlr_learners_regr.cv_glmnet,
mlr_learners_regr.glmnet,
mlr_learners_regr.kknn,
mlr_learners_regr.km,
mlr_learners_regr.lm,
mlr_learners_regr.nnet,
mlr_learners_regr.ranger,
mlr_learners_regr.svm,
mlr_learners_regr.xgboost
if (requireNamespace("ranger", quietly = TRUE)) {
# Define the Learner and set parameter values
learner = lrn("classif.ranger")
print(learner)
# Define a Task
task = tsk("sonar")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# print the model
print(learner$model)
# importance method
if("importance" %in% learner$properties) print(learner$importance)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.