| mlr_learners_regr.cv_glmnet | R Documentation |
Generalized linear models with elastic net regularization.
Calls glmnet::cv.glmnet() from package glmnet.
The default for hyperparameter family is set to "gaussian".
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("regr.cv_glmnet")
lrn("regr.cv_glmnet")
Task type: “regr”
Predict Types: “response”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3learners, glmnet
| Id | Type | Default | Levels | Range |
| alignment | character | lambda | lambda, fraction | - |
| alpha | numeric | 1 | [0, 1] |
|
| big | numeric | 9.9e+35 | (-\infty, \infty) |
|
| devmax | numeric | 0.999 | [0, 1] |
|
| dfmax | integer | - | [0, \infty) |
|
| eps | numeric | 1e-06 | [0, 1] |
|
| epsnr | numeric | 1e-08 | [0, 1] |
|
| exclude | integer | - | [1, \infty) |
|
| exmx | numeric | 250 | (-\infty, \infty) |
|
| family | character | gaussian | gaussian, poisson | - |
| fdev | numeric | 1e-05 | [0, 1] |
|
| foldid | untyped | NULL | - | |
| gamma | untyped | - | - | |
| grouped | logical | TRUE | TRUE, FALSE | - |
| intercept | logical | TRUE | TRUE, FALSE | - |
| keep | logical | FALSE | TRUE, FALSE | - |
| lambda | untyped | - | - | |
| lambda.min.ratio | numeric | - | [0, 1] |
|
| lower.limits | untyped | - | - | |
| maxit | integer | 100000 | [1, \infty) |
|
| mnlam | integer | 5 | [1, \infty) |
|
| mxit | integer | 100 | [1, \infty) |
|
| mxitnr | integer | 25 | [1, \infty) |
|
| nfolds | integer | 10 | [3, \infty) |
|
| nlambda | integer | 100 | [1, \infty) |
|
| use_pred_offset | logical | TRUE | TRUE, FALSE | - |
| parallel | logical | FALSE | TRUE, FALSE | - |
| penalty.factor | untyped | - | - | |
| pmax | integer | - | [0, \infty) |
|
| pmin | numeric | 1e-09 | [0, 1] |
|
| prec | numeric | 1e-10 | (-\infty, \infty) |
|
| predict.gamma | numeric | gamma.1se | (-\infty, \infty) |
|
| relax | logical | FALSE | TRUE, FALSE | - |
| s | numeric | lambda.1se | [0, \infty) |
|
| standardize | logical | TRUE | TRUE, FALSE | - |
| standardize.response | logical | FALSE | TRUE, FALSE | - |
| thresh | numeric | 1e-07 | [0, \infty) |
|
| trace.it | integer | 0 | [0, 1] |
|
| type.gaussian | character | - | covariance, naive | - |
| type.logistic | character | - | Newton, modified.Newton | - |
| type.measure | character | deviance | deviance, class, auc, mse, mae | - |
| type.multinomial | character | - | ungrouped, grouped | - |
| upper.limits | untyped | - | - | |
If a Task contains a column with the offset role, it is automatically incorporated during training via the offset argument in glmnet::glmnet().
During prediction, the offset column from the test set is used only if use_pred_offset = TRUE (default), passed via the newoffset argument in glmnet::predict.glmnet().
Otherwise, if the user sets use_pred_offset = FALSE, a zero offset is applied, effectively disabling the offset adjustment during prediction.
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrCVGlmnet
new()Creates a new instance of this R6 class.
LearnerRegrCVGlmnet$new()
selected_features()Returns the set of selected features as reported by glmnet::predict.glmnet()
with type set to "nonzero".
LearnerRegrCVGlmnet$selected_features(lambda = NULL)
lambda(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.
(character()) of feature names.
clone()The objects of this class are cloneable with this method.
LearnerRegrCVGlmnet$clone(deep = FALSE)
deepWhether to make a deep clone.
Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v033.i01")}.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
Dictionary of Learners: mlr3::mlr_learners
as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_classif.cv_glmnet,
mlr_learners_classif.glmnet,
mlr_learners_classif.kknn,
mlr_learners_classif.lda,
mlr_learners_classif.log_reg,
mlr_learners_classif.multinom,
mlr_learners_classif.naive_bayes,
mlr_learners_classif.nnet,
mlr_learners_classif.qda,
mlr_learners_classif.ranger,
mlr_learners_classif.svm,
mlr_learners_classif.xgboost,
mlr_learners_regr.glmnet,
mlr_learners_regr.kknn,
mlr_learners_regr.km,
mlr_learners_regr.lm,
mlr_learners_regr.nnet,
mlr_learners_regr.ranger,
mlr_learners_regr.svm,
mlr_learners_regr.xgboost
if (requireNamespace("glmnet", quietly = TRUE)) {
# Define the Learner and set parameter values
learner = lrn("regr.cv_glmnet")
print(learner)
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# print the model
print(learner$model)
# importance method
if("importance" %in% learner$properties) print(learner$importance)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.