| mlr_learners_regr.lm | R Documentation |
Ordinary linear regression.
Calls stats::lm().
If a Task has a column with the role offset, it will automatically be used during training.
The offset is incorporated through the formula interface to ensure compatibility with stats::lm().
We add it to the model formula as offset(<column_name>) and also include it in the training data.
During prediction, the default behavior is to use the offset column from the test set (enabled by use_pred_offset = TRUE).
Otherwise, if the user sets use_pred_offset = FALSE, a zero offset is applied, effectively disabling the offset adjustment during prediction.
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("regr.lm")
lrn("regr.lm")
Task type: “regr”
Predict Types: “response”, “se”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”
Required Packages: mlr3, mlr3learners, 'stats'
| Id | Type | Default | Levels | Range |
| df | numeric | Inf | (-\infty, \infty) |
|
| interval | character | - | none, confidence, prediction | - |
| level | numeric | 0.95 | (-\infty, \infty) |
|
| model | logical | TRUE | TRUE, FALSE | - |
| pred.var | untyped | - | - | |
| qr | logical | TRUE | TRUE, FALSE | - |
| scale | numeric | NULL | (-\infty, \infty) |
|
| singular.ok | logical | TRUE | TRUE, FALSE | - |
| x | logical | FALSE | TRUE, FALSE | - |
| y | logical | FALSE | TRUE, FALSE | - |
| rankdeficient | character | - | warnif, simple, non-estim, NA, NAwarn | - |
| tol | numeric | 1e-07 | (-\infty, \infty) |
|
| verbose | logical | FALSE | TRUE, FALSE | - |
| use_pred_offset | logical | TRUE | TRUE, FALSE | - |
To ensure reproducibility, this learner always uses the default contrasts:
contr.treatment() for unordered factors, and
contr.poly() for ordered factors.
Setting the option "contrasts" does not have any effect.
Instead, set the respective hyperparameter or use mlr3pipelines to create dummy features.
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLM
new()Creates a new instance of this R6 class.
LearnerRegrLM$new()
clone()The objects of this class are cloneable with this method.
LearnerRegrLM$clone(deep = FALSE)
deepWhether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
Dictionary of Learners: mlr3::mlr_learners
as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_classif.cv_glmnet,
mlr_learners_classif.glmnet,
mlr_learners_classif.kknn,
mlr_learners_classif.lda,
mlr_learners_classif.log_reg,
mlr_learners_classif.multinom,
mlr_learners_classif.naive_bayes,
mlr_learners_classif.nnet,
mlr_learners_classif.qda,
mlr_learners_classif.ranger,
mlr_learners_classif.svm,
mlr_learners_classif.xgboost,
mlr_learners_regr.cv_glmnet,
mlr_learners_regr.glmnet,
mlr_learners_regr.kknn,
mlr_learners_regr.km,
mlr_learners_regr.nnet,
mlr_learners_regr.ranger,
mlr_learners_regr.svm,
mlr_learners_regr.xgboost
if (requireNamespace("stats", quietly = TRUE)) {
# Define the Learner and set parameter values
learner = lrn("regr.lm")
print(learner)
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# print the model
print(learner$model)
# importance method
if("importance" %in% learner$properties) print(learner$importance)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.