Nothing
#' @title Acquisition Function Confidence Bound
#'
#' @include AcqFunction.R
#' @name mlr_acqfunctions_cb
#'
#' @templateVar id cb
#' @template section_dictionary_acqfunctions
#'
#' @description
#' Lower / Upper Confidence Bound.
#'
#' @section Parameters:
#' * `"lambda"` (`numeric(1)`)\cr
#' \eqn{\lambda} value used for the confidence bound.
#' Defaults to `2`.
#'
#' @references
#' * `r format_bib("snoek_2012")`
#'
#' @family Acquisition Function
#' @export
#' @examples
#' if (requireNamespace("mlr3learners") &
#' requireNamespace("DiceKriging") &
#' requireNamespace("rgenoud")) {
#' library(bbotk)
#' library(paradox)
#' library(mlr3learners)
#' library(data.table)
#'
#' fun = function(xs) {
#' list(y = xs$x ^ 2)
#' }
#' domain = ps(x = p_dbl(lower = -10, upper = 10))
#' codomain = ps(y = p_dbl(tags = "minimize"))
#' objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
#'
#' instance = OptimInstanceBatchSingleCrit$new(
#' objective = objective,
#' terminator = trm("evals", n_evals = 5))
#'
#' instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
#'
#' learner = default_gp()
#'
#' surrogate = srlrn(learner, archive = instance$archive)
#'
#' acq_function = acqf("cb", surrogate = surrogate, lambda = 3)
#'
#' acq_function$surrogate$update()
#' acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
#' }
AcqFunctionCB = R6Class("AcqFunctionCB",
inherit = AcqFunction,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#'
#' @param surrogate (`NULL` | [SurrogateLearner]).
#' @param lambda (`numeric(1)`).
initialize = function(surrogate = NULL, lambda = 2) {
assert_r6(surrogate, "SurrogateLearner", null.ok = TRUE)
assert_number(lambda, lower = 0, finite = TRUE)
constants = ps(lambda = p_dbl(lower = 0, default = 2))
constants$values$lambda = lambda
super$initialize("acq_cb", constants = constants, surrogate = surrogate, requires_predict_type_se = TRUE, direction = "same", label = "Lower / Upper Confidence Bound", man = "mlr3mbo::mlr_acqfunctions_cb")
}
),
private = list(
.fun = function(xdt, ...) {
constants = list(...)
lambda = constants$lambda
p = self$surrogate$predict(xdt)
cb = p$mean - self$surrogate_max_to_min * lambda * p$se
data.table(acq_cb = cb)
}
)
)
mlr_acqfunctions$add("cb", AcqFunctionCB)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.