sle | R Documentation |
Calculates the per-observation squared error as
\left( \ln (1 + t_i) - \ln (1 + r_i) \right)^2.
Measure to compare true observed response with predicted response in regression tasks.
Note that this is an unaggregated measure, returning the losses per observation.
sle(truth, response, ...)
truth |
( |
response |
( |
... |
( |
Performance value as numeric(length(truth))
.
Type: "regr"
Range (per observation): [0, \infty)
Minimize (per observation): TRUE
Required prediction: response
Other Regression Measures:
ae()
,
ape()
,
bias()
,
ktau()
,
linex()
,
mae()
,
mape()
,
maxae()
,
maxse()
,
medae()
,
medse()
,
mse()
,
msle()
,
pbias()
,
pinball()
,
rae()
,
rmse()
,
rmsle()
,
rrse()
,
rse()
,
rsq()
,
sae()
,
se()
,
smape()
,
srho()
,
sse()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.