Nothing
#' @title False Negatives
#'
#' @details
#' This measure counts the false negatives (type 2 error), i.e. the number of
#' predictions indicating a negative class label while in fact it is positive.
#' This is sometimes also called a "miss" or an "underestimation".
#'
#' @templateVar mid fn
#' @template binary_template
#'
#' @references
#' \url{https://en.wikipedia.org/wiki/Template:DiagnosticTesting_Diagram}
#'
#' @inheritParams binary_params
#' @template binary_example
#' @export
fn = function(truth, response, positive, ...) {
assert_binary(truth, response = response, positive = positive)
fn_cm(cm(truth, response, positive))
}
fn_cm = function(m, na_value = NaN) {
m[2L, 1L]
}
#' @include measures.R
add_measure(fn, "False Negatives", "binary", 0, Inf, TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.