Nothing
#' @title Multiclass Brier Score
#'
#' @details
#' Brier score for multi-class classification problems with \eqn{k} labels defined as \deqn{
#' \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^k (I_{ij} - p_{ij})^2.
#' }{
# 1/n * sum_i sum_j (I_ij - p_ij)^2.
#' }
#' \eqn{I_{ij}}{I_ij} is 1 if observation \eqn{x_i} has true label \eqn{j}, and 0 otherwise.
#' \eqn{p_{ij}}{p_ij} is the probability that observation \eqn{x_i} belongs to class \eqn{j}.
#'
#' Note that there also is the more common definition of the Brier score for binary
#' classification problems in [bbrier()].
#'
#' @templateVar mid mbrier
#' @template classif_template
#'
#' @references
#' `r format_bib("brier_1950")`
#'
#' @inheritParams classif_params
#' @template classif_example
#' @export
mbrier = function(truth, prob, ...) {
assert_classif(truth, prob = prob)
mat01 = contr.treatment(colnames(prob), contrasts = FALSE)
mat01 = mat01[match(truth, rownames(mat01)), ]
mean(rowSums(.se(mat01, prob)))
}
#' @include measures.R
add_measure(mbrier, "Multiclass Brier Score", "classif", 0, 2, TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.