Nothing
skip_if_not_installed("mlr3")
skip_if_not_installed("bbotk")
skip_if_not_installed("patchwork")
library("bbotk") # nolint
requireNamespace("mlr3learners")
set.seed(42)
fun = function(xs) {
c(y = -(xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + 10)
}
domain = ps(
x1 = p_dbl(-10, 10),
x2 = p_dbl(-5, 5)
)
codomain = ps(
y = p_dbl(tags = "maximize")
)
obfun = ObjectiveRFun$new(
fun = fun,
domain = domain,
codomain = codomain
)
instance = OptimInstanceBatchSingleCrit$new(objective = obfun, terminator = trm("evals", n_evals = 20))
optimizer = opt("random_search", batch_size = 2)
optimizer$optimize(instance)
test_that("fortify.OptimInstanceBatchSingleCrit", {
f = fortify(instance)
expect_data_table(f, nrows = 20, ncols = 7)
expect_names(names(f), permutation.of = c("x1", "x2", "y", "timestamp", "batch_nr", "x_domain_x1", "x_domain_x2"))
})
test_that("autoplot.OptimInstanceBatchSingleCrit", {
expect_single = function(id, plot) {
expect_true(is.ggplot(plot))
expect_doppelganger(sprintf("tisc_%s", id), plot)
}
expect_multiple = function(id, plots) {
assert_string(id)
expect_class(plots, "DelayedPatchworkPlot")
for (i in seq_along(plots)) {
cur = plots[[i]]
expect_true(is.ggplot(cur))
expect_doppelganger(sprintf("tisc_%s_%02i", id, i), cur)
}
}
p = autoplot(instance, type = "marginal")
expect_multiple("marginal", p)
p = autoplot(instance, type = "marginal", cols_x = "x_domain_x1")
expect_multiple("marginal_x_domain", p)
p = autoplot(instance, type = "marginal", trafo = TRUE)
expect_multiple("marginal_trafo", p)
p = autoplot(instance, type = "performance")
expect_single("performance", p)
p = autoplot(instance, type = "parameter")
expect_multiple("parameter", p)
p = autoplot(instance, type = "parameter", cols_x = "x_domain_x1")
expect_multiple("parameter_x_domain", p)
p = autoplot(instance, type = "parameter", trafo = TRUE)
expect_multiple("parameter_trafo", p)
p = autoplot(instance, type = "parameter", return_list = TRUE)
expect_multiple("parameter_return_list", p)
p = autoplot(instance, type = "surface")
expect_single("surface", p)
p = autoplot(instance, type = "surface", grid_resolution = 50)
expect_single("surface_grid_50", p)
p = autoplot(instance, type = "surface", learner = mlr3::lrn("regr.lm"))
expect_single("surface_regr_lm", p)
p = autoplot(instance, type = "points")
expect_single("points", p)
p = autoplot(instance, type = "parallel")
expect_single("parallel", p)
p = autoplot(instance, type = "pairs")
expect_s3_class(p, "ggmatrix")
# categorical domain is tested through test_TuningInstanceBatchSingleCrit
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.