Nothing
#require(testthat)
## library(mniw)
source("mniw-testfunctions.R")
context("Matrix Normal Distribution")
tol <- 1e-6
test_that("Matrix Normal density is same in C++ as R", {
calc.diff <- FALSE
case.par <- expand.grid(p = c(1,2,4), q = c(1,2,3),
X = c("single", "multi"),
Lambda = c("none", "single", "multi"),
SigmaR = c("none", "single", "multi"),
SigmaC = c("none", "single", "multi"),
drop = c(TRUE, FALSE), stringsAsFactors = FALSE)
ncases <- nrow(case.par)
n <- 10
if(calc.diff) {
MaxDiff <- rep(NA, ncases)
}
for(ii in 1:ncases) {
cp <- case.par[ii,]
p <- cp$p
q <- cp$q
args <- list(X = list(p = p, q = q, rtype = cp$X, vtype = "matrix"),
Lambda = list(p = p, q = q, rtype = cp$Lambda, vtype = "matrix"),
SigmaR = list(p = p, rtype = cp$SigmaR, vtype = "matrix"),
SigmaC = list(q = q, rtype = cp$SigmaC, vtype = "matrix"))
args <- get_args(n = n, args = args, drop = cp$drop)
# R test
llR <- rep(NA, n)
for(jj in 1:n) {
llR[jj] <- dMNormR(X = args$R$X[[jj]],
Lambda = args$R$Lambda[[jj]],
SigmaU = args$R$SigmaR[[jj]],
SigmaV = args$R$SigmaC[[jj]],
log = TRUE)
}
# C++ test
llcpp <- do.call(dMNorm, args = c(args$cpp, list(log = TRUE)))
# if all inputs to c++ are single it returns only one value
if(all_single(cp)) {
llcpp <- rep(llcpp, n)
}
mx <- abs(llR-llcpp)
mx <- min(max(mx), max(mx/abs(llR)))
if(calc.diff) {
MaxDiff[ii] <- mx
} else {
## expect_equal(mx, 0, tolerance = tol)
expect_Rcpp_equal("dMNorm", ii, mx, tolerance = tol)
}
}
})
test_that("Matrix Normal simulation is same in C++ as R", {
calc.diff <- FALSE
case.par <- expand.grid(p = c(1,2,4), q = c(1,2,3),
Lambda = c("none", "single", "multi"),
SigmaR = c("none", "single", "multi"),
SigmaC = c("none", "single", "multi"),
drop = c(TRUE, FALSE), stringsAsFactors = FALSE)
# remove cases where dimensions can't be identified
case.par <- case.par[!with(case.par, {
Lambda == "none" & ((SigmaR == "none") | (SigmaC == "none"))}),]
ncases <- nrow(case.par)
rownames(case.par) <- 1:ncases
n <- 10
TestSeed <- sample(1e6, ncases)
if(calc.diff) {
MaxDiff <- rep(NA, ncases)
}
for(ii in 1:nrow(case.par)) {
set.seed(TestSeed[ii]) # seed
cp <- case.par[ii,]
p <- cp$p
q <- cp$q
args <- list(Lambda = list(p = p, q = q, rtype = cp$Lambda, vtype = "matrix"),
SigmaR = list(p = p, rtype = cp$SigmaR, vtype = "matrix"),
SigmaC = list(q = q, rtype = cp$SigmaC, vtype = "matrix"))
args <- get_args(n = n, args = args, drop = cp$drop)
# R test
set.seed(TestSeed[ii]) # seed
XR <- array(NA, dim = c(p,q,n))
for(jj in 1:n) {
XR[,,jj] <- rMNormR(Lambda = args$R$Lambda[[jj]],
SigmaU = args$R$SigmaR[[jj]],
SigmaV = args$R$SigmaC[[jj]])
}
# C++ test
set.seed(TestSeed[ii]) # seed
Xcpp <- do.call(rMNorm, args = c(args$cpp, list(n = n)))
mx <- abs(range(XR - Xcpp))
mx <- min(max(mx), max(mx/abs(XR)))
if(calc.diff) {
MaxDiff[ii] <- mx
} else {
## expect_equal(mx, 0, tolerance = tol)
expect_Rcpp_equal("rMNorm", ii, mx, tolerance = tol)
}
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.