module.RecUnit: R6 class representing the recurrent layer of a Elmam or...

Description Super class Methods Author(s)

Description

R6 class representing the recurrent layer of a Elmam or Jordan recurrent neural network

R6 class representing the recurrent layer of a Elmam or Jordan recurrent neural network

Super class

modello::module -> module.RecUnit

Methods

Public methods

Inherited methods

Method new()

Initialisation method

Usage
module.RecUnit$new(tx, nh, nx, act)
Arguments
tx

transposition flag. If > 0 op(x) = t(x)

nh

number of input from the previous time steps

nx

number of input form the current time step

act

activation function


Method op()

Performs: act(Wx . op(x) + Wh . h + B)

Usage
module.RecUnit$op(h, x)
Arguments
h

number input from previous time steps

x

number input from the current timestep


Method pars()

Returns the parameters of the module as list with entries: W0 = weight matrix for past inputs, W = weight matrix for current input, and B = bias matrix

Usage
module.RecUnit$pars()
Returns

Returns a flat list with the parametrs of the module


Method clone()

The objects of this class are cloneable with this method.

Usage
module.RecUnit$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

Filippo Monari


modello documentation built on Feb. 2, 2021, 9:06 a.m.