Description Super class Methods Author(s)
R6 class representing the recurrent layer of a Elmam or Jordan recurrent neural network
R6 class representing the recurrent layer of a Elmam or Jordan recurrent neural network
modello::module
-> module.RecUnit
new()
Initialisation method
module.RecUnit$new(tx, nh, nx, act)
tx
transposition flag. If > 0 op(x) = t(x)
nh
number of input from the previous time steps
nx
number of input form the current time step
act
activation function
op()
Performs: act(Wx . op(x) + Wh . h + B)
module.RecUnit$op(h, x)
h
number
input from previous time steps
x
number
input from the current timestep
pars()
Returns the parameters of the module as list with entries: W0 = weight matrix for past inputs, W = weight matrix for current input, and B = bias matrix
module.RecUnit$pars()
Returns a flat list with the parametrs of the module
clone()
The objects of this class are cloneable with this method.
module.RecUnit$clone(deep = FALSE)
deep
Whether to make a deep clone.
Filippo Monari
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.