Nothing
# ---- Auto ADAM ----
context("TEST adam_reg: Auto ADAM")
# SETUP ----
# Data
m750 <- timetk::m4_monthly %>% dplyr::filter(id == "M750")
# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)
# PARSNIP ----
# * NO XREGS ----
test_that("adam_reg: Auto ADAM, (No xregs), Test Model Fit Object", {
skip_on_cran()
# Reproducibility across runners
old_rng <- RNGkind()
on.exit(do.call(RNGkind, as.list(old_rng)), add = TRUE)
set.seed(123)
# Model Spec
model_spec <- adam_reg(
seasonal_period = 12
) %>%
parsnip::set_engine("auto_adam")
# Fit Spec
model_fit <- model_spec %>%
fit(value ~ date, data = rsample::training(splits))
# Predictions
predictions_tbl <- model_fit %>%
modeltime_calibrate(rsample::testing(splits), quiet = FALSE) %>%
modeltime_forecast(new_data = rsample::testing(splits)) %>%
dplyr::filter(.key == "prediction")
expect_s3_class(model_fit$fit, "Auto_adam_fit_impl")
# $fit
expect_s3_class(model_fit$fit$models$model_1, "adam")
expect_s3_class(model_fit$fit$data, "tbl_df")
expect_equal(names(model_fit$fit$data)[1], "date")
expect_null(model_fit$fit$extras$xreg_recipe)
# $preproc
expect_equal(model_fit$preproc$y_var, "value")
# Structure
expect_identical(nrow(rsample::testing(splits)), nrow(predictions_tbl))
expect_identical(rsample::testing(splits)$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
resid <- rsample::testing(splits)$value - predictions_tbl$.value
# - Max Error less than 5000
expect_lte(max(abs(resid)), 5000)
# - MAE less than 2200
expect_lte(mean(abs(resid)), 2200)
})
# * XREGS ----
test_that("adam_reg: Auto ADAM, (XREGS)", {
skip_on_cran()
# Reproducibility across runners
old_rng <- RNGkind()
on.exit(do.call(RNGkind, as.list(old_rng)), add = TRUE)
set.seed(123)
# Data
m750 <- timetk::m4_monthly %>% dplyr::filter(id == "M750") %>%
dplyr::mutate(month = lubridate::month(date, label = TRUE))
# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)
# Model Spec
model_spec <- adam_reg(
seasonal_period = 12
) %>%
parsnip::set_engine("auto_adam")
# Fit Spec
model_fit <- model_spec %>%
fit(value ~ date + month, data = rsample::training(splits))
# Predictions
predictions_tbl <- model_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits)) %>%
dplyr::filter(.key == "prediction")
expect_s3_class(model_fit$fit, "Auto_adam_fit_impl")
# $fit
expect_s3_class(model_fit$fit$models$model_1, "adam")
expect_s3_class(model_fit$fit$data, "tbl_df")
expect_equal(names(model_fit$fit$data)[1], "date")
expect_true(!is.null(model_fit$fit$extras$xreg_recipe))
# $preproc
expect_equal(model_fit$preproc$y_var, "value")
# Structure
expect_identical(nrow(rsample::testing(splits)), nrow(predictions_tbl))
expect_identical(rsample::testing(splits)$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
resid <- rsample::testing(splits)$value - predictions_tbl$.value
# - Max Error less than 5000
expect_lte(max(abs(resid)), 5000)
# - MAE less than 2200
expect_lte(mean(abs(resid)), 2200)
})
# ---- WORKFLOWS ----
test_that("adam_reg: Auto ADAM (workflow), Test Model Fit Object", {
skip_on_cran()
testthat::skip_if_not_installed("smooth")
# Reproducibility across runners
old_rng <- RNGkind()
on.exit(do.call(RNGkind, as.list(old_rng)), add = TRUE)
set.seed(123)
# Data
m750 <- timetk::m4_monthly %>%
dplyr::filter(id == "M750") %>%
dplyr::mutate(month = lubridate::month(date, label = TRUE))
# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)
# Model Spec
model_spec <- adam_reg(
seasonal_period = 12
) %>%
parsnip::set_engine("auto_adam")
# Recipe spec
recipe_spec <- recipes::recipe(value ~ date, data = rsample::training(splits))
# Workflow
wflw <- workflows::workflow() %>%
workflows::add_recipe(recipe_spec) %>%
workflows::add_model(model_spec)
wflw_fit <- wflw %>% fit(rsample::training(splits))
# Forecast (DO NOT filter yet; we need all rows for structure checks)
predictions_tbl <- wflw_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(
new_data = rsample::testing(splits),
actual_data = rsample::training(splits)
) %>%
dplyr::arrange(.index)
expect_s3_class(wflw_fit$fit$fit$fit, "Auto_adam_fit_impl")
# $fit
expect_s3_class(wflw_fit$fit$fit$fit$models$model_1, "adam")
expect_s3_class(wflw_fit$fit$fit$fit$data, "tbl_df")
expect_equal(names(wflw_fit$fit$fit$fit$data)[1], "date")
expect_null(wflw_fit$fit$fit$fit$extras$xreg_recipe)
# $preproc
mld <- wflw_fit %>% workflows::extract_mold()
expect_equal(names(mld$outcomes), "value")
# ---- Structure checks against full_data (train + test actuals + test predictions) ----
full_data <- dplyr::bind_rows(rsample::training(splits), rsample::testing(splits))
expect_identical(nrow(full_data), nrow(predictions_tbl))
expect_identical(full_data$date, predictions_tbl$.index)
# ---- Out-of-Sample Accuracy Tests (use only prediction rows) ----
pred_tbl <- dplyr::filter(predictions_tbl, .key == "prediction")
resid <- rsample::testing(splits)$value - pred_tbl$.value
# Max absolute error and MAE thresholds (your originals)
expect_lte(max(abs(resid)), 5000)
expect_lte(mean(abs(resid)), 2200)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.