Nothing
# ---- STANDARD ARIMA ----
context("TEST arima_boost: arima_xgboost")
library(xgboost)
library(randomForest)
# library(earth)
# library(kernlab)
library(stats)
library(tidymodels)
library(parsnip)
library(workflows)
library(rsample)
library(recipes)
library(tune)
library(dials)
library(yardstick)
library(timetk)
library(dplyr)
library(lubridate)
# SETUP ----
# Data
m750 <- timetk::m4_monthly %>% dplyr::filter(id == "M750")
# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)
# Model Spec
model_spec <- arima_boost(
seasonal_period = 12,
non_seasonal_ar = 3,
non_seasonal_differences = 1,
non_seasonal_ma = 3,
seasonal_ar = 1,
seasonal_differences = 0,
seasonal_ma = 1,
mtry = 25,
trees = 250,
min_n = 4,
learn_rate = 0.1,
tree_depth = 7,
loss_reduction = 0.4,
sample_size = 0.9
) %>%
parsnip::set_engine("arima_xgboost")
# PARSNIP ----
# * NO XREGS ----
# TESTS
test_that("arima_boost: Arima, (No xregs), Test Model Fit Object", {
skip_on_cran()
#
# Fit Spec
model_fit <- model_spec %>%
fit(log(value) ~ date, data = rsample::training(splits))
# Predictions
predictions_tbl <- model_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits))
expect_s3_class(model_fit$fit, "arima_xgboost_fit_impl")
# $fit
expect_s3_class(model_fit$fit$models$model_1, "Arima")
expect_s3_class(model_fit$fit$data, "tbl_df")
expect_equal(names(model_fit$fit$data)[1], "date")
expect_null(model_fit$fit$extras$xreg_recipe)
# $fit xgboost
expect_identical(model_fit$fit$models$model_2, NULL)
# $preproc
expect_equal(model_fit$preproc$y_var, "value")
# arima_boost: Arima, (No xregs), Test Predictions
# Structure
expect_identical(nrow(rsample::testing(splits)), nrow(predictions_tbl))
expect_identical(rsample::testing(splits)$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
resid <- rsample::testing(splits)$value - exp(predictions_tbl$.value)
# - Max Error less than 1500
expect_lte(max(abs(resid)), 1500)
# - MAE less than 700
expect_lte(mean(abs(resid)), 700)
})
# * XREGS ----
# TESTS
test_that("arima_boost: Arima, (XREGS), Test Model Fit Object", {
skip_on_cran()
#
# Fit Spec
model_fit <- model_spec %>%
fit(log(value) ~ date + as.numeric(date) + lubridate::month(date, label = TRUE), data = rsample::training(splits))
# Predictions
predictions_tbl <- model_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits))
expect_s3_class(model_fit$fit, "arima_xgboost_fit_impl")
# Structure
expect_s3_class(model_fit$fit$data, "tbl_df")
expect_equal(names(model_fit$fit$data)[1], "date")
expect_true(!is.null(model_fit$fit$extras$xreg_recipe))
# $fit arima
expect_s3_class(model_fit$fit$models$model_1, "Arima")
# $fit xgboost
expect_s3_class(model_fit$fit$models$model_2, "xgb.Booster")
expect_identical(model_fit$fit$models$model_2$params$eta, 0.1)
expect_identical(model_fit$fit$models$model_2$params$max_depth, 7)
expect_identical(model_fit$fit$models$model_2$params$gamma, 0.4)
expect_identical(model_fit$fit$models$model_2$params$colsample_bytree, 1)
expect_identical(model_fit$fit$models$model_2$params$min_child_weight, 4)
expect_identical(model_fit$fit$models$model_2$params$subsample, 0.9)
expect_identical(model_fit$fit$models$model_2$params$objective, "reg:squarederror")
# $preproc
expect_equal(model_fit$preproc$y_var, "value")
# arima_boost: Arima (XREGS), Test Predictions
# Structure
expect_identical(nrow(rsample::testing(splits)), nrow(predictions_tbl))
expect_identical(rsample::testing(splits)$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
resid <- rsample::testing(splits)$value - exp(predictions_tbl$.value)
# - Max Error less than 1500
expect_lte(max(abs(resid)), 1500)
# - MAE less than 700
expect_lte(mean(abs(resid)), 700)
})
# ---- WORKFLOWS ----
# TESTS
test_that("arima_boost: Arima (workflow), Test Model Fit Object", {
skip_on_cran()
#
# Model Spec
model_spec <- arima_boost(
seasonal_period = 12,
non_seasonal_ar = 3,
non_seasonal_differences = 1,
non_seasonal_ma = 3,
seasonal_ar = 1,
seasonal_differences = 0,
seasonal_ma = 1,
mtry = 25,
trees = 250,
min_n = 4,
learn_rate = 0.1,
tree_depth = 7,
loss_reduction = 0.4,
sample_size = 0.9
) %>%
parsnip::set_engine("arima_xgboost")
# Recipe spec
recipe_spec <- recipes::recipe(value ~ date, data = rsample::training(splits)) %>%
recipes::step_log(value, skip = FALSE) %>%
recipes::step_date(date, features = "month") %>%
recipes::step_mutate(date_num = as.numeric(date))
# Workflow
wflw <- workflows::workflow() %>%
workflows::add_recipe(recipe_spec) %>%
workflows::add_model(model_spec)
wflw_fit <- wflw %>%
fit(rsample::training(splits))
# Forecast
predictions_tbl <- wflw_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits), actual_data = rsample::training(splits)) %>%
dplyr::mutate(dplyr::across(.value, exp))
expect_s3_class(wflw_fit$fit$fit$fit, "arima_xgboost_fit_impl")
# Structure
expect_s3_class(wflw_fit$fit$fit$fit$data, "tbl_df")
expect_equal(names(wflw_fit$fit$fit$fit$data)[1], "date")
expect_true(!is.null(wflw_fit$fit$fit$fit$extras$xreg_recipe))
# $fit arima
expect_s3_class(wflw_fit$fit$fit$fit$models$model_1, "Arima")
# $fit xgboost
expect_s3_class(wflw_fit$fit$fit$fit$models$model_2, "xgb.Booster")
expect_identical(wflw_fit$fit$fit$fit$models$model_2$params$eta, 0.1)
expect_identical(wflw_fit$fit$fit$fit$models$model_2$params$max_depth, 7)
expect_identical(wflw_fit$fit$fit$fit$models$model_2$params$gamma, 0.4)
expect_identical(wflw_fit$fit$fit$fit$models$model_2$params$colsample_bytree, 1)
expect_identical(wflw_fit$fit$fit$fit$models$model_2$params$min_child_weight, 4)
expect_identical(wflw_fit$fit$fit$fit$models$model_2$params$subsample, 0.9)
expect_identical(wflw_fit$fit$fit$fit$models$model_2$params$objective, "reg:squarederror")
# $preproc
mld <- wflw_fit %>% workflows::extract_mold()
expect_equal(names(mld$outcomes), "value")
# arima_boost: Arima (workflow), Test Predictions
full_data <- dplyr::bind_rows(rsample::training(splits), rsample::testing(splits))
# Structure
expect_identical(nrow(full_data), nrow(predictions_tbl))
expect_identical(full_data$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
predictions_tbl <- predictions_tbl %>% dplyr::filter(.key == "prediction")
resid <- rsample::testing(splits)$value - predictions_tbl$.value
# - Max Error less than 1500
expect_lte(max(abs(resid)), 1500)
# - MAE less than 700
expect_lte(mean(abs(resid)), 700)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.