Nothing
# ---- NNETAR ----
context("TEST nnetar_reg")
# SETUP ----
# Data
m750 <- timetk::m4_monthly %>% dplyr::filter(id == "M750")
# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)
# PARSNIP ----
# * NO XREGS ----
# TESTS
test_that("nnetar_reg: Parsnip", {
skip_on_cran()
# Model Spec
model_spec <- nnetar_reg(
seasonal_period = 12,
non_seasonal_ar = 3,
seasonal_ar = 1,
hidden_units = 6,
num_networks = 15,
penalty = 0.1,
epochs = 50
) %>%
parsnip::set_engine("nnetar")
# Fit Spec
set.seed(123)
model_fit <- model_spec %>%
fit(log(value) ~ date, data = rsample::training(splits))
# Predictions
predictions_tbl <- model_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits))
expect_s3_class(model_fit$fit, "nnetar_fit_impl")
# $fit
expect_s3_class(model_fit$fit$models$model_1, "nnetar")
expect_s3_class(model_fit$fit$data, "tbl_df")
expect_equal(names(model_fit$fit$data)[1], "date")
expect_null(model_fit$fit$extras$xreg_recipe)
expect_identical(model_fit$fit$models$model_1$p, 3)
expect_identical(model_fit$fit$models$model_1$P, 1)
expect_identical(model_fit$fit$models$model_1$size, 6)
# nnets
expect_identical(length(model_fit$fit$models$model_1$model), 15L)
expect_identical(model_fit$fit$models$model_1$model[[1]]$decay, 0.1)
# $preproc
expect_equal(model_fit$preproc$y_var, "value")
# Structure
expect_identical(nrow(rsample::testing(splits)), nrow(predictions_tbl))
expect_identical(rsample::testing(splits)$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
resid <- rsample::testing(splits)$value - exp(predictions_tbl$.value)
# - Max Error less than 1500
expect_lte(max(abs(resid)), 1600)
# - MAE less than 700
expect_lte(mean(abs(resid)), 700)
# * XREGS ----
# Fit
set.seed(123)
model_fit <- model_spec %>%
fit(log(value) ~ date + lubridate::month(date, label = TRUE), data = rsample::training(splits))
# Predictions
predictions_tbl <- model_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits))
expect_s3_class(model_fit$fit, "nnetar_fit_impl")
# $fit
expect_s3_class(model_fit$fit$models$model_1, "nnetar")
expect_s3_class(model_fit$fit$data, "tbl_df")
expect_equal(names(model_fit$fit$data)[1], "date")
expect_true(!is.null(model_fit$fit$extras$xreg_recipe))
expect_identical(model_fit$fit$models$model_1$p, 3)
expect_identical(model_fit$fit$models$model_1$P, 1)
expect_identical(model_fit$fit$models$model_1$size, 6)
# nnets
expect_identical(length(model_fit$fit$models$model_1$model), 15L)
expect_identical(model_fit$fit$models$model_1$model[[1]]$decay, 0.1)
# $preproc
expect_equal(model_fit$preproc$y_var, "value")
# Structure
expect_identical(nrow(rsample::testing(splits)), nrow(predictions_tbl))
expect_identical(rsample::testing(splits)$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
resid <- rsample::testing(splits)$value - exp(predictions_tbl$.value)
# - Max Error 967.2171
expect_lte(max(abs(resid)), 1250)
# - MAE 407.0114
expect_lte(mean(abs(resid)), 500)
})
# ---- WORKFLOWS ----
# TESTS
test_that("nnetar_reg: (workflow)", {
skip_on_cran()
# Model Spec
model_spec <- nnetar_reg(
seasonal_period = 12,
non_seasonal_ar = 3,
seasonal_ar = 1,
hidden_units = 6,
num_networks = 15,
penalty = 0.1,
epochs = 50
) %>%
parsnip::set_engine("nnetar")
# Recipe spec
recipe_spec <- recipes::recipe(value ~ date, data = rsample::training(splits)) %>%
recipes::step_log(value, skip = FALSE)
# Workflow
wflw <- workflows::workflow() %>%
workflows::add_recipe(recipe_spec) %>%
workflows::add_model(model_spec)
set.seed(123)
wflw_fit <- wflw %>%
fit(rsample::training(splits))
# Forecast
predictions_tbl <- wflw_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits), actual_data = rsample::training(splits)) %>%
dplyr::mutate(dplyr::across(.value, exp))
expect_s3_class(wflw_fit$fit$fit$fit, "nnetar_fit_impl")
# $fit
expect_s3_class(wflw_fit$fit$fit$fit$models$model_1, "nnetar")
expect_s3_class(wflw_fit$fit$fit$fit$data, "tbl_df")
expect_equal(names(wflw_fit$fit$fit$fit$data)[1], "date")
expect_null(wflw_fit$fit$fit$fit$extras$xreg_recipe)
expect_identical(wflw_fit$fit$fit$fit$models$model_1$p, 3)
expect_identical(wflw_fit$fit$fit$fit$models$model_1$P, 1)
expect_identical(wflw_fit$fit$fit$fit$models$model_1$size, 6)
# nnets
expect_identical(length(wflw_fit$fit$fit$fit$models$model_1$model), 15L)
expect_identical(wflw_fit$fit$fit$fit$models$model_1$model[[1]]$decay, 0.1)
# $preproc
mld <- wflw_fit %>% workflows::extract_mold()
expect_equal(names(mld$outcomes), "value")
# Predictions
full_data <- dplyr::bind_rows(rsample::training(splits), rsample::testing(splits))
# Structure
expect_identical(nrow(full_data), nrow(predictions_tbl))
expect_identical(full_data$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
predictions_tbl <- predictions_tbl %>% dplyr::filter(.key == "prediction")
resid <- rsample::testing(splits)$value - predictions_tbl$.value
# - Max Error less than 1501.464
expect_lte(max(abs(resid)), 1600)
# - MAE less than 700
expect_lte(mean(abs(resid)), 700)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.