Nothing
# ---- STANDARD ARIMA ----
context("TEST seasonal_reg() - stlm_arima")
# TESTS
test_that("seasonal_reg - arima: parnip", {
skip_on_cran()
# PARSNIP ----
# * XREGS ----
# SETUP ----
# Split Data 80/20
splits <- rsample::initial_time_split(timetk::taylor_30_min, prop = 0.9)
# Model Spec
model_spec <- seasonal_reg(seasonal_period_1 = "1 day", seasonal_period_2 = "week") %>%
parsnip::set_engine("stlm_arima")
# CHECKS ----
test_that("seasonal_reg: checks", {
# external regressors message
expect_error({
seasonal_reg(seasonal_period_1 = 1) %>%
parsnip::set_engine("stlm_arima") %>%
fit(value ~ date, data = rsample::training(splits))
})
})
# SETUP
# Fit Spec
model_fit <- model_spec %>%
fit(log(value) ~ date + wday(date, label = TRUE), data = rsample::training(splits))
# Predictions
predictions_tbl <- model_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits))
# TEST
expect_s3_class(model_fit$fit, "stlm_arima_fit_impl")
# $fit
expect_s3_class(model_fit$fit$models$model_1, "stlm")
expect_s3_class(model_fit$fit$data, "tbl_df")
expect_equal(names(model_fit$fit$data)[1], "date")
expect_true(!is.null(model_fit$fit$extras$xreg_recipe))
# $fit xgboost
expect_identical(model_fit$fit$models$model_2, NULL)
# $preproc
expect_equal(model_fit$preproc$y_var, "value")
# Structure
expect_identical(nrow(rsample::testing(splits)), nrow(predictions_tbl))
expect_identical(rsample::testing(splits)$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
resid <- rsample::testing(splits)$value - exp(predictions_tbl$.value)
# - Max Error less than 1500
expect_lte(max(abs(resid)), 2500)
# - MAE less than 700
expect_lte(mean(abs(resid)), 700)
# ---- WORKFLOWS ----
# SETUP
# Recipe spec
recipe_spec <- recipes::recipe(value ~ date, data = rsample::training(splits)) %>%
recipes::step_log(value, skip = FALSE) %>%
recipes::step_date(date, features = "dow")
# Workflow
wflw <- workflows::workflow() %>%
workflows::add_recipe(recipe_spec) %>%
workflows::add_model(model_spec)
wflw_fit <- wflw %>%
fit(rsample::training(splits))
# Forecast
predictions_tbl <- wflw_fit %>%
modeltime_calibrate(rsample::testing(splits)) %>%
modeltime_forecast(new_data = rsample::testing(splits), actual_data = rsample::training(splits)) %>%
dplyr::mutate(dplyr::across(.value, exp))
# TEST
expect_s3_class(wflw_fit$fit$fit$fit, "stlm_arima_fit_impl")
# Structure
expect_s3_class(wflw_fit$fit$fit$fit$data, "tbl_df")
expect_equal(names(wflw_fit$fit$fit$fit$data)[1], "date")
expect_true(!is.null(wflw_fit$fit$fit$fit$extras$xreg_recipe))
# $fit arima
expect_s3_class(wflw_fit$fit$fit$fit$models$model_1, "stlm")
# $preproc
mld <- wflw_fit %>% workflows::extract_mold()
expect_equal(names(mld$outcomes), "value")
full_data <- dplyr::bind_rows(rsample::training(splits), rsample::testing(splits))
# Structure
expect_identical(nrow(full_data), nrow(predictions_tbl))
expect_identical(full_data$date, predictions_tbl$.index)
# Out-of-Sample Accuracy Tests
predictions_tbl <- predictions_tbl %>% dplyr::filter(.key == "prediction")
resid <- rsample::testing(splits)$value - predictions_tbl$.value
# - Max Error less than 1500
expect_lte(max(abs(resid)), 2500)
# - MAE less than 700
expect_lte(mean(abs(resid)), 700)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.