Nothing
calcFIM_da <- function(model,
finalModel,
theta,
data = NULL,
method = "lms",
calc.se = TRUE,
FIM = "observed",
robust.se = FALSE,
P = NULL,
hessian = FALSE,
EFIM.parametric = TRUE,
NA__ = -999,
EFIM.S = 3e4,
epsilon = 1e-8,
R.max = 1e6,
verbose = FALSE,
cr1s = TRUE) {
if (!calc.se) return(list(FIM = NULL, vcov = NULL, vcov.sub = NULL, type = "none",
raw.labels = names(theta), n.additions = 0))
if (verbose) printf("Calculating standard errors (%s)\n", FIM)
I <- switch(method,
lms =
switch(FIM,
observed = calcOFIM_LMS(model, theta = theta, data = data,
epsilon = epsilon, hessian = hessian, P = P,
robust.se = robust.se, cluster = data$cluster,
cr1s = cr1s),
expected = calcEFIM_LMS(model, finalModel = finalModel, theta = theta,
data = data, epsilon = epsilon, S = EFIM.S,
parametric = EFIM.parametric, verbose = verbose,
R.max = R.max, P = P),
stop2("FIM must be either expected or observed")),
qml =
switch(FIM,
observed = calcOFIM_QML(model, theta = theta, data = data,
hessian = hessian, epsilon = epsilon,
robust.se = robust.se, cluster = data$cluster,
cr1s = cr1s),
expected = calcEFIM_QML(model, finalModel = finalModel, theta = theta,
data = data, epsilon = epsilon, S = EFIM.S,
parametric = EFIM.parametric, verbose = verbose,
R.max = R.max),
stop2("FIM must be either expected or observed")),
stop2("Unrecognized method: ", method)
)
if (robust.se) {
warnif(hessian && FIM == "observed",
"`robust.se = TRUE` should not be paired with ",
"`OFIM.hessian = TRUE` and `FIM = \"observed\"`")
H <- calcHessian(model, theta = theta, data = data, method = method,
epsilon = epsilon, P = P)
invH <- solveFIM(H, NA__ = NA__)
vcov <- invH %*% I %*% invH
} else {
vcov <- solveFIM(I, NA__ = NA__)
}
vcov.all <- getVCOV_LabelledParams(vcov = vcov, model = model, theta = theta,
method = method)
nAdditions <- ncol(vcov.all) - ncol(vcov)
lavLabels <- model$lavLabels
subLavLabels <- lavLabels[colnames(vcov.all) %in% names(theta)]
rawLabels <- colnames(vcov.all)
dimnames(vcov.all) <- list(lavLabels, lavLabels)
dimnames(I) <- dimnames(vcov) <- list(subLavLabels, subLavLabels)
list(FIM = I, vcov.all = vcov.all, vcov.free = vcov, type = FIM,
raw.labels = rawLabels, n.additions = nAdditions)
}
fdHESS <- function(pars, ...) {
tryCatch(
nlme::fdHess(pars = pars, ...)$Hessian,
error = function(e) {
warning2("Calculation of Hessian matrix failed...\n ", e$message)
matrix(NA, nrow = length(pars), ncol = length(pars))
}
)
}
calcHessian <- function(model, theta, data, method = "lms",
epsilon = 1e-8, P = NULL) {
if (method == "lms") {
if (is.null(P)) P <- estepLms(model, theta = theta, data = data)
# negative hessian (sign = -1)
fH <- \(model) observedInfoFromLouisLms(model = model, theta = theta,
data = data, P = P)$I.obs
H <- tryCatch(suppressWarnings(fH(model)), error = function(e) {
warning2("Optimized calculation of Hessian failed, attempting to switch!\n", e)
model$gradientStruct$hasCovModel <- TRUE
suppressWarnings(fH(model))
})
} else if (method == "qml") {
# negative hessian (sign = -1)
suppressWarnings({
H <- fdHESS(pars = theta, fun = logLikQml, model = model,
sign = -1, .relStep = .Machine$double.eps^(1/5))
})
}
H
}
solveFIM <- function(H, NA__ = -999, use.ginv = FALSE) {
tryCatch(if (use.ginv) GINV(H) else solve(H),
error = function(e) {
if (!use.ginv) return(solveFIM(H, NA__ = NA__, use.ginv = TRUE))
H[TRUE] <- NA__
H
},
warning = function(w)
if (grepl("NaN", conditionMessage(w))) suppressWarnings(solve(H)) else solve(H)
)
}
calcSE_da <- function(calc.se = TRUE, vcov, rawLabels, NA__ = -999) {
if (!calc.se) return(rep(NA__, length(rawLabels)))
if (is.null(vcov)) {
warning2("Fisher Information Matrix (FIM) was not calculated, ",
"unable to compute standard errors", immediate. = FALSE)
return(rep(NA__, length(rawLabels)))
}
se <- suppressWarnings(sqrt(diag(vcov)))
if (all(is.na(se))) {
warning2("Standard errors could not be computed, negative Hessian is singular.",
immediate. = FALSE)
} else if (any(is.nan(se))) {
warning2("Standard errors for some coefficients could not be computed.",
immediate. = FALSE)
}
if (!is.null(names(se))) names(se) <- rawLabels
se[is.na(se)] <- NA__
se
}
calcOFIM_LMS <- function(model, theta, data, hessian = FALSE,
epsilon = 1e-6, P = NULL,
robust.se = FALSE,
cluster = NULL,
cr1s = TRUE) {
if (is.null(P)) P <- estepLms(model, theta = theta, data = data)
if (hessian) {
# negative hessian (sign = -1)
I <- calcHessian(model, theta = theta, data = data,
method = "lms", epsilon = epsilon, P = P)
return(I)
}
# S: N x k matrix of individual score contributions (OPG)
S <- suppressWarnings(
gradientObsLogLikLms_i(theta, model = model, data = data,
P = P, sign = +1, epsilon = epsilon)
)
if (!robust.se || is.null(cluster)) {
# classic OFIM via outer product of gradients (BHHH)
return(crossprod(S))
}
stopif(length(cluster) != nrow(S),
"Length of 'cluster' must equal the number of rows in the data / scores.")
f <- as.factor(cluster)
G <- nlevels(f)
k <- ncol(S)
# aggregate scores by cluster: s_g = sum_{i in g} s_i
Sg <- matrix(0, nrow = G, ncol = k)
lev <- levels(f)
for (g in seq_len(G)) {
idx <- which(f == lev[g])
Sg[g, ] <- colSums(S[idx, , drop = FALSE])
}
B <- crossprod(Sg) # meat = sum_g s_g s_g'
# optional CR1S small-sample correction
if (isTRUE(cr1s)) {
N <- nrow(S); q <- ncol(S)
if (G > 1 && N > q) {
B <- B * (G / (G - 1)) * ((N - 1) / (N - q))
}
}
B
}
calcEFIM_LMS <- function(model, finalModel = NULL, theta, data,
S = 100,
parametric = TRUE,
epsilon = 1e-6,
verbose = FALSE,
R.max = 1e6,
P = NULL) {
k <- length(theta) # number of free parameters
N <- data$n
R <- min(R.max, N * S)
warnif(R.max <= N, "R.max is less than N!")
ovs <- colnames(data$data.full)
if (parametric) {
stopif(is.null(finalModel), "finalModel must be included in calcEFIM_LMS")
parTable <- modelToParTable(finalModel, method = "lms")
population <- simulateDataParTable(parTable, N = R, colsOVs = ovs)$oV
} else {
population <- data$data.full[sample(data$n, R, replace = TRUE), , drop = FALSE]
}
population <- patternizeMissingDataFIML(population)
popEstep <- estepLms(model = model,
theta = theta,
data = population,
recalcQuad = TRUE,
lastQuad = if(!is.null(P)) P$quad else NULL)
suppressWarnings({
J <- gradientObsLogLikLms_i(theta = theta,
model = model,
data = population,
P = popEstep,
sign = +1,
epsilon = epsilon) # R × k matrix
})
I <- matrix(0, nrow = k, ncol = k)
for (i in seq_len(S)) {
if (R == N * S) {
# non-overlapping split
idx1 <- (i - 1) * N + 1
sub <- idx1:(idx1 + N - 1)
} else {
sub <- sample(R, N)
}
I <- I + crossprod(J[sub, , drop = FALSE])
}
if (verbose) cat("\n")
I / S
}
calcEFIM_QML <- function(model, finalModel = NULL, theta, data, S = 100,
parametric = TRUE, epsilon = 1e-8, verbose = FALSE,
R.max = 1e6) {
k <- length(theta) # number of free parameters
N <- data$n
R <- min(R.max, N * S)
warnif(R.max <= N, "R.max is less than N!")
ovs <- colnames(data$data.full)
if (parametric) {
stopif(is.null(finalModel), "finalModel must be included in calcEFIM_QML")
parTable <- modelToParTable(finalModel, method = "qml")
population <- tryCatch(
simulateDataParTable(parTable, N = R, colsOVs = ovs)$oV,
error = function(e) {
warning2("Unable to simulate data for EFIM, using stochastic sampling instead")
calcEFIM_QML(model = model, theta = theta, data = data, S = S,
parametric = FALSE, epsilon = epsilon)
}
)
} else population <- data$data.full[sample(N, R, replace = TRUE), ]
model$data <- patternizeMissingDataFIML(population)
if (!is.null(model$matrices$fullU)) {
fullU <- model$matrices$fullU
model$matrices$fullU <- fullU[rep(seq_len(N), length.out = R), , drop = FALSE]
}
suppressWarnings({
J <- gradientLogLikQml_i(theta = theta, model = model, sign = +1,
epsilon = epsilon)
})
I <- matrix(0, nrow = k, ncol = k)
for (i in seq_len(S)) {
if (R == N * S) {
# non-overlapping split
idx1 <- (i - 1) * N + 1
sub <- idx1:(idx1 + N - 1)
} else {
sub <- sample(R, N)
}
I <- I + crossprod(J[sub, , drop = FALSE])
}
if (verbose) cat("\n")
I / S
}
calcOFIM_QML <- function(model, theta, data, hessian = FALSE,
epsilon = 1e-8,
robust.se = FALSE,
cluster = NULL,
cr1s = TRUE) {
N <- nrow(model$data)
if (hessian) {
# negative hessian (sign = -1)
I <- calcHessian(model = model, theta = theta, data = data,
method = "qml", epsilon = epsilon)
return(I)
}
# S: N x k matrix of individual score contributions (sign = +1 => score)
S <- suppressWarnings(
gradientLogLikQml_i(theta, model = model, sign = +1, epsilon = epsilon)
)
if (!robust.se || is.null(cluster)) {
# classic OFIM (BHHH / OPG)
return(crossprod(S))
}
stopif(length(cluster) != nrow(S),
"Length of 'cluster' must equal the number of rows in the data / scores.")
f <- as.factor(cluster)
G <- nlevels(f)
k <- ncol(S)
# s_g = sum_{i in g} s_i
Sg <- matrix(0, nrow = G, ncol = k)
lev <- levels(f)
for (g in seq_len(G)) {
idx <- which(f == lev[g])
Sg[g, ] <- colSums(S[idx, , drop = FALSE])
}
B <- crossprod(Sg) # meat = sum_g s_g s_g'
# Optional CR1S small-sample correction
if (isTRUE(cr1s)) {
q <- ncol(S)
if (G > 1 && N > q) {
B <- B * (G / (G - 1)) * ((N - 1) / (N - q))
}
}
B
}
getSE_Model <- function(model, se, method, n.additions) {
model$lenThetaLabel <- model$lenThetaLabel + n.additions
fillModel(replaceNonNaModelMatrices(model, value = -999),
theta = se, method = method)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.