tests/testthat/test_lav_models.R

devtools::load_all()
set.seed(123)
models <- list(m1 = ' 
               # latent variables 
               ind60 =~ x1 + x2 + x3 
               dem60 =~ y1 + y2 + y3 + y4 
               dem65 =~ y5 + y6 + y7 + y8 
               # regressions
               dem60 ~ ind60 
               dem65 ~ ind60 + dem60 
               dem65 ~ ind60:dem60
               # residual covariances 
               y1 ~~ y5
               y2 ~~ y4 + y6 
               y3 ~~ y7 
               y4 ~~ y8
               y6 ~~ y8
               ',
               m3 = ' visual  =~ x1 + x2 + x3 
               textual =~ x4 + x5 + x6
               speed   =~ x7 + x8 + x9
               visual ~ speed + textual + speed:textual',
               m4 = 'visual  =~ x1 + start(0.8)*x2 + start(1.2)*x3
               textual =~ x4 + start(0.5)*x5 + start(1.0)*x6
               speed   =~ x7 + start(0.7)*x8 + start(1.8)*x9
               visual ~ speed + textual + speed:textual',
               m5 = '# three-factor model
               visual  =~ x1 + x2 + x3
               textual =~ x4 + x5 + x6
               speed   =~ x7 + x8 + x9
               visual ~ speed + textual + 0.1*speed:textual
               # intercepts with fixed values
               x1 + x2 + x3 + x4 ~ 0.5*1',
               m6 = '# three-factor model
               visual  =~ x1 + x2 + x3
               textual =~ x4 + x5 + x6
               speed   =~ x7 + x8 + x9
               visual ~ speed + textual + speed:textual
               # intercepts
               x1 ~ 1
               x2 ~ 1
               x3 ~ 1
               x4 ~ 1
               x5 ~ 1
               x6 ~ 1
               x7 ~ 1
               x8 ~ 1
               x9 ~ 1'
               
)



data <- list(d1 = lavaan::PoliticalDemocracy,
             d3 = lavaan::HolzingerSwineford1939, 
             d4 = lavaan::HolzingerSwineford1939, 
             d5 = lavaan::HolzingerSwineford1939, 
             d6 = lavaan::HolzingerSwineford1939)

nativeMethods <- allNativeMethods[allNativeMethods != "pind"]
methods <- list(m1 = nativeMethods[nativeMethods != "ca"],
                m3 = nativeMethods,
                m4 = nativeMethods,
                m5 = nativeMethods,
                m6 = nativeMethods[nativeMethods != c("uca", "ca")])


estimates <- vector("list", length(models))
testthat::expect_warning({
  for (i in seq_along(estimates)) {
    model  <- models[[i]]
    data_i <- data[[i]]
    ests   <- vector("list", length(methods))
    names(ests) <- methods

    for (method in methods[[i]]) {
      ests[[method]] <- modsem(model, data_i, method=method, estimator = "ML")
    }
    estimates[[i]] <- ests
  }
}, regexp = ".*Replacing `start.*`.* in.*") # make this more informative later

# testing plot function 
plot_interaction(x = "ind60", z = "dem60", y = "dem65", xz = "ind60:dem60", 
                 vals_z = c(-0.5, 0.5), model = estimates[[1]][["rca"]])
plot_interaction(x = "speed", z = "textual", y = "visual", 
                 vals_z = c(-0.5, 0.5), model = estimates[[2]][["ca"]])

testthat::expect_warning(
  plot_jn(x = "ind60", z = "dem60", y = "dem65", model = estimates[[1]][["rca"]],
          max_z = 10, min_z = -10), regex = "Degrees of freedom .*"
)
plot_jn(x = "speed", z = "textual", y = "visual", model = estimates[[2]][["ca"]],
        max_z = 6)

print(summary(estimates[[1]][["rca"]]))
print(estimates[[1]][["rca"]])

testthat::expect_true(summary(estimates[[1]][["rca"]])$info$version != "??")

Try the modsem package in your browser

Any scripts or data that you put into this service are public.

modsem documentation built on April 3, 2025, 7:51 p.m.