Nothing
#' @title Model prediction
#' @description Model projection into a RasterStack
#'
#' @param models Model class object (e.g. "glm") or list of model class objects, e.g. as returned by function \code{\link[mopa]{extractFromModel}}.
#' @param newClim RasterStack or list of RasterStack objects with variables for projecting
#'
#'
#' @return RasterStack of the projected probabilities
#' @seealso \code{\link[mopa]{mopaTrain}}, \code{\link[mopa]{extractFromPrediction}}
#'
#' @author M. Iturbide
#'
#' @examples
#' # SHORT EXAMPLE
#' destfile <- tempfile()
#' data.url <- "https://raw.githubusercontent.com/SantanderMetGroup/mopa/master/data/biostack.rda"
#' download.file(data.url, destfile)
#' load(destfile, verbose = TRUE)
#'
#' ## Fitted models
#' data(mods)
#' ?mods
#'
#' ## Model prediction
#' newClim <- lapply(1:4, function(x){
#' crop(biostack$future[[x]], extent(-10, 10, 35, 65))
#' })
#'
#' prdRS.fut <- mopaPredict(models = mods, newClim = newClim)
#'
#' \donttest{
#' # FULL WORKED EXAMPLE
#' ## Load presence data
#' data(Oak_phylo2)
#'
#' ## Load climate data
#' destfile <- tempfile()
#' data.url <- "https://raw.githubusercontent.com/SantanderMetGroup/mopa/master/data/biostack.rda"
#' download.file(data.url, destfile)
#' load(destfile, verbose = TRUE)
#'
#' ## Spatial reference
#' r <- biostack$baseline[[1]]
#' ## Create background grid
#' bg <- backgroundGrid(r)
#'
#' ## Generate pseudo-absences
#' RS_random <-pseudoAbsences(xy = Oak_phylo2, background = bg$xy,
#' exclusion.buffer = 0.083*5, prevalence = -0.5, kmeans = FALSE)
#' ## Model training
#' fittedRS <- mopaTrain(y = RS_random, x = biostack$baseline,
#' k = 10, algorithm = "glm", weighting = TRUE)
#' ## Extract fitted models
#' mods <- extractFromModel(models = fittedRS, value = "model")
#'
#' ## Model prediction
#' preds <- mopaPredict(models = mods, newClim = biostack$future)
#' }
#'
#' @references Iturbide, M., Bedia, J., Herrera, S., del Hierro, O., Pinto, M., Gutierrez, J.M., 2015.
#' A framework for species distribution modelling with improved pseudo-absence generation. Ecological
#' Modelling. DOI:10.1016/j.ecolmodel.2015.05.018.
#'
#' @export
mopaPredict <- function(models, newClim){
if(class(newClim) != "list"){
newClim <- list(newClim)
}
# ml <- depth(models)-1
# repk <- 5-ml
# while(repk != 0){
# repk <- repk - 1
# models <- list(models)
# }
pred <- list()
for(l in 1:length(models)){
prd <- list()
for(i in 1:length(models[[l]])){
prd0 <- list()
for(k in 1:length(models[[l]][[i]])){
prd1 <- list()
for(h in 1:length(models[[l]][[i]][[k]])){
prd.var <- list()
nm <- character()
for(n in 1:length(newClim)){
prd.var[[n]] <- mopaPredict0(models[[l]][[i]][[k]][[h]], newClim = newClim[[n]])
if(n < 10){
nm[n] <- paste0("0", n)
}else{
nm[n] <- as.character(n)
}
}
if(is.null(names(newClim))) names(newClim) <- paste0("newClim", nm)
names(prd.var) <- names(newClim)
# if(length(prd.var)==1) prd.var <- prd.var[[1]]
prd1[[h]] <- prd.var
}
names(prd1) <- names(models[[l]][[i]][[k]])
prd0[[k]] <- prd1
}
names(prd0) <- names(models[[l]][[i]])
# if(length(prd0)==1) prd0 <- prd0[[1]]
prd[[i]] <- prd0
}
names(prd) <- names(models[[l]])
# if(length(prd)==1) prd <- prd[[1]]
pred[[l]] <- prd
}
names(pred) <- names(models)
# if(length(pred) == 1) pred <- pred[[1]]
return(pred)
}
#end
#' @title Internal function for model prediction
#' @description Internal function for model projection into a RasterStack
#'
#' @param models model class object (e.g. "glm") or list of model class objects, e.g. as returned by function \code{\link[mopa]{extractFromModel}}.
#' @param newClim RasterStack or list of RasterStacks of variables for projecting. If list, named lists are
#' recommended
#'
#'
#' @return RasterStack of the projected probabilities
#' @seealso \code{\link[mopa]{mopaTrain}}
#'
#' @author M. Iturbide
#'
#' @keywords internal
#' @references Iturbide, M., Bedia, J., Herrera, S., del Hierro, O., Pinto, M., Gutierrez, J.M., 2015.
#' A framework for species distribution modelling with improved pseudo-absence generation. Ecological
#' Modelling. DOI:10.1016/j.ecolmodel.2015.05.018.
#'
#'
mopaPredict0 <- function(models, newClim){
suppressWarnings(if(class(models) != "list") models <- list(models))
b1 <- cbind(coordinates(newClim), rep(1, nrow(coordinates(newClim))))
projenviro <- biomat(data = b1, varstack = newClim)[,-1]
pro <- rep(NA, nrow(projenviro))
projenviro2 <- projenviro[which(!is.na(projenviro[,1])),]
projectionland <- cbind(coordinates(newClim), projenviro)
ras <- list()
for (i in 1:length(models)){
alg <- models[[i]]
algorithm <- class(alg)[1]
if(algorithm != "MaxEnt"){
if (algorithm == "rpart") {
pro <- predict(alg, projenviro)
}else if (algorithm=="cart.tree"){
pro <- predict(alg, projenviro)
}else if(algorithm == "ranger"){
pro[which(!is.na(projenviro[,1]))] <- predict(alg, projenviro2)$predictions
}else{
pro <- predict(alg, projenviro, type="response")
}
pro[which(pro > 1)] <- 1
pro[which(pro < 0)] <- 0
ras[[i]] <- raster(SpatialPixelsDataFrame(coordinates(newClim), as.data.frame(pro)))
}else{
ras[[i]] <- predict(alg, newClim)
}
}
names(ras) <- names(models)
if(length(ras) == 1) ras <- ras[[1]]
return(ras)
}
#end
#' @title Level depth in a list
#' @description Level depth in a list
#'
#' @param this list
#'
#' @return number of nesting lists
#' @keywords internal
#' @author M. Iturbide
depth <- function(this){
that <- this
i <- 0
while(is.list(that)){
i <- i + 1
that <- that[[1]]
}
return(i+1)
}
#end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.