plotDist | R Documentation |
Provides a simple way to generate plots of pdfs, probability mass functions, cdfs, probability histograms, and normal-quantile plots for distributions known to R.
plotDist(
dist,
...,
xlim = NULL,
ylim = NULL,
add,
under = FALSE,
packets = NULL,
rows = NULL,
columns = NULL,
kind = c("density", "cdf", "qq", "histogram"),
xlab = "",
ylab = "",
breaks = NULL,
type,
resolution = 5000L,
params = NULL
)
dist |
A string identifying the distribution. This should work
with any distribution that has associated functions beginning
with 'd', 'p', and 'q' (e.g,
|
... |
other arguments passed along to lattice graphing routines |
xlim |
a numeric vector of length 2 or |
ylim |
a numeric vector of length 2 or |
add |
a logical indicating whether the plot should be added to the previous lattice plot.
If missing, it will be set to match |
under |
a logical indicating whether adding should be done in a layer under or over the existing
layers when |
packets , rows , columns |
specification of which panels will be added to when
|
kind |
one of "density", "cdf", "qq", or "histogram" (or prefix of any of these) |
xlab , ylab |
as per other lattice functions |
breaks |
a vector of break points for bins of histograms,
as in |
type |
passed along to various lattice graphing functions |
resolution |
number of points to sample when generating the plots |
params |
a list containing parameters for the distribution. If |
plotDist()
determines whether the distribution
is continuous or discrete by seeing if all the sampled quantiles are
unique. A discrete random variable with many possible values could
fool this algorithm and be considered continuous.
The plots are done referencing a data frame with variables
x
and y
giving points on the graph of the
pdf, pmf, or cdf for the distribution. This can be useful in conjunction
with the groups
argument. See the examples.
ggformula::gf_dist()
plotDist('norm')
plotDist('norm', type='h')
plotDist('norm', kind='cdf')
plotDist('exp', kind='histogram')
plotDist('binom', params=list( 25, .25)) # explicit params
plotDist('binom', 25, .25) # params inferred
plotDist('norm', mean=100, sd=10, kind='cdf') # params inferred
plotDist('binom', 25, .25, xlim=c(-1,26) ) # params inferred
plotDist('binom', params=list( 25, .25), kind='cdf')
plotDist('beta', params=list( 3, 10), kind='density')
plotDist('beta', params=list( 3, 10), kind='cdf')
plotDist( "binom", params=list(35,.25),
groups= y < dbinom(qbinom(0.05, 35, .25), 35,.25) )
plotDist( "binom", params=list(35,.25),
groups= y < dbinom(qbinom(0.05, 35, .25), 35,.25),
kind='hist')
plotDist("norm", mean=10, sd=2, col="blue", type="h")
plotDist("norm", mean=12, sd=2, col="red", type="h", under=TRUE)
plotDist("binom", size=100, prob=.30) +
plotDist("norm", mean=30, sd=sqrt(100 * .3 * .7))
plotDist("chisq", df=4, groups = x > 6, type="h")
plotDist("f", df1=1, df2 = 99)
if (require(mosaicData)) {
histogram( ~age|sex, data=HELPrct)
m <- mean( ~age|sex, data=HELPrct)
s <- sd(~age|sex, data=HELPrct)
plotDist( "norm", mean=m[1], sd=s[1], col="red", add=TRUE, packets=1)
plotDist( "norm", mean=m[2], sd=s[2], col="blue", under=TRUE, packets=2)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.