Nothing
#get_DC_Report
test_that("get_DC_Report works", {
data <- list(
MQ = list(
filename = "A",
software = "MaxQuant",
data = list(
"ev" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 5),
Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 2),
Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 2),
Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 2)
),
"pep" = tibble::tibble(
"Stripped.Sequence_mpwR" = c("A", "B", "C", "D", "E"),
"Intensity 01" = c(4, 4, 3.9, 5, 5),
"Intensity 02" = c(4, 4, 3.9, 5, 5)
),
"pg" = tibble::tibble(
"ProteinGroup.IDs_mpwR" = c("A", "B", "C", "D", "E"),
"Intensity 01" = c(4, 4, 3.9, 5, 5),
"Intensity 02" = c(4, 4, 3.9, 5, 5)
)
)
),
DIANN = list(
filename = "B",
software = "DIA-NN",
data = list(
"DIA-NN" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 10),
Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 4),
ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4)
)
)
),
Spectronaut = list(
filename = "C",
software = "Spectronaut",
data = list(
"Spectronaut" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 15),
Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 6),
Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 6),
Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 6),
ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 6)
)
)
),
PD = list(
filename = "D",
software = "PD",
data = list(
"psm" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 10),
Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 4),
ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4)
),
"prot" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 10),
Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4)
),
"pg" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 10),
ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4)
)
)
),
Generic = list(
filename = "Generic",
software = "Generic",
data = list(
"Generic" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 15),
Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 6),
Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 6),
Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 6),
ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 6)
)
)
)
)
output <- get_DC_Report(input_list = data, metric = "absolute")
expect_type(output, "list")
expect_equal(length(output), 5)
expect_equal(names(output), c("A", "B", "C", "D", "Generic"))
expect_equal(output[["A"]]$Protein.IDs, c(0, 5))
output <- get_DC_Report(input_list = data, metric = "percentage")
expect_type(output, "list")
expect_equal(length(output), 5)
expect_equal(names(output), c("A", "B", "C", "D", "Generic"))
expect_equal(output[["A"]]$Protein.IDs, c(0, 100))
#test error messages
expect_error(get_DC_Report(input_list = data, metric = "absolte"), "Please check your metric entry - only use absolute or percentage")
data <- list(
MQ = list(
filename = "A",
software = "MaxQuant",
data = list(
"ev" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 5),
Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 2),
Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 2),
Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 2)
),
"pep" = tibble::tibble(
"Stripped.Sequence_mpwR" = c("A", "B", "C", "D", "E"),
"Intensity 01" = c(4, 4, 3.9, 5, 5),
"Intensity 02" = c(4, 4, 3.9, 5, 5)
),
"pg" = tibble::tibble(
"ProteinGroup.IDs_mpwR" = c("A", "B", "C", "D", "E"),
"Intensity 01" = c(4, 4, 3.9, 5, 5),
"Intensity 02" = c(4, 4, 3.9, 5, 5)
)
)
),
DIANN = list(
filename = "B",
software = "DIA-NN",
data = list(
"DIA-NN" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 10),
Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 4),
# ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4)
)
)
),
Spectronaut = list(
filename = "C",
software = "Spectronaut",
data = list(
"Spectronaut" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 15),
Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 6),
Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 6),
ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 6)
)
)
),
PD = list(
filename = "D",
software = "PD",
data = list(
"psm" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 10),
# Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 4),
ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4)
),
"prot" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 10),
Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4)
),
"pg" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 10),
ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4)
)
)
)
)
expect_error(get_DC_Report(input_list = data, metric = "absolute"))
})
#plot_DC_barplot
test_that("plot_DC_barplot works", {
data <- list(
"A" = tibble::tibble(
Analysis = c("A", "A", "A"),
Nr.Missing.Values = c(2, 1, 0),
Precursor.IDs = c(50, 200, 4500),
Peptide.IDs = c(30, 190, 3000),
Protein.IDs = c(20, 40, 600),
ProteinGroup.IDs = c(15, 30, 450),
Profile = c("unique", "shared with at least 50%", "complete")
),
"B" = tibble::tibble(
Analysis = c("B", "B", "B"),
Nr.Missing.Values = c(2, 1, 0),
Precursor.IDs = c(50, 180, 4600),
Peptide.IDs = c(50, 170, 3200),
Protein.IDs = c(20, 40, 500),
ProteinGroup.IDs = c(15, 30, 400),
Profile = c("unique", "shared with at least 50%", "complete")
)
)
output <- plot_DC_barplot(input_list = data, level = "Precursor.IDs", label = "absolute")
expect_type(output, "list")
expect_s3_class(output[["A"]], "ggplot")
expect_s3_class(output[["B"]], "ggplot")
output <- plot_DC_barplot(input_list = data, level = "Precursor.IDs", label = "percentage")
expect_type(output, "list")
expect_s3_class(output[["A"]], "ggplot")
expect_s3_class(output[["B"]], "ggplot")
output <- plot_DC_barplot(input_list = data, level = "Peptide.IDs", label = "absolute")
expect_type(output, "list")
expect_s3_class(output[["A"]], "ggplot")
expect_s3_class(output[["B"]], "ggplot")
output <- plot_DC_barplot(input_list = data, level = "Peptide.IDs", label = "percentage")
expect_type(output, "list")
expect_s3_class(output[["A"]], "ggplot")
expect_s3_class(output[["B"]], "ggplot")
output <- plot_DC_barplot(input_list = data, level = "Protein.IDs", label = "absolute")
expect_type(output, "list")
expect_s3_class(output[["A"]], "ggplot")
expect_s3_class(output[["B"]], "ggplot")
output <- plot_DC_barplot(input_list = data, level = "Protein.IDs", label = "percentage")
expect_type(output, "list")
expect_s3_class(output[["A"]], "ggplot")
expect_s3_class(output[["B"]], "ggplot")
output <- plot_DC_barplot(input_list = data, level = "ProteinGroup.IDs", label = "absolute")
expect_type(output, "list")
expect_s3_class(output[["A"]], "ggplot")
expect_s3_class(output[["B"]], "ggplot")
output <- plot_DC_barplot(input_list = data, level = "ProteinGroup.IDs", label = "percentage")
expect_type(output, "list")
expect_s3_class(output[["A"]], "ggplot")
expect_s3_class(output[["B"]], "ggplot")
#test error messages
expect_error(plot_DC_barplot(input_list = data, level = "Preursor.IDs", label = "absolute"), "Please check your level entry - only use Precursor.IDs, Peptide.IDs, Protein.IDs or ProteinGroup.IDs")
expect_error(plot_DC_barplot(input_list = data, level = "Precursor.IDs", label = "absolte"), "Please check your label entry - only use absolute or percentage")
data <- list(
"A" = tibble::tibble(
Analysis = c("A", "A", "A"),
Precursor.IDs = c(50, 200, 4500),
Peptide.IDs = c(30, 190, 3000),
Protein.IDs = c(20, 40, 600),
ProteinGroup.IDs = c(15, 30, 450),
Profile = c("unique", "shared with at least 50%", "complete")
),
"B" = tibble::tibble(
Analysis = c("B", "B", "B"),
Nr.Missing.Values = c(2, 1, 0),
Precursor.IDs = c(50, 180, 4600),
Peptide.IDs = c(50, 170, 3200),
Protein.IDs = c(20, 40, 500),
ProteinGroup.IDs = c(15, 30, 400),
Profile = c("unique", "shared with at least 50%", "complete")
)
)
expect_error(plot_DC_barplot(input_list = data, level = "Precursor.IDs", label = "absolute"), "Wrong input detected - each input report requires the following columns Analysis, Nr.Missing.Values, ProteinGroup.IDs, Protein.IDs, Peptide.IDs, Precursor.IDs, Profile")
})
#plot_DC_stacked_barplot
test_that("plot_DC_stacked_barplot works", {
data <- list(
"A" = tibble::tibble(
Analysis = c("A", "A", "A"),
Nr.Missing.Values = c(2, 1, 0),
Precursor.IDs = c(50, 200, 4500),
Peptide.IDs = c(30, 190, 3000),
Protein.IDs = c(20, 40, 600),
ProteinGroup.IDs = c(15, 30, 450),
Profile = c("unique", "shared with at least 50%", "complete")
),
"B" = tibble::tibble(
Analysis = c("B", "B", "B"),
Nr.Missing.Values = c(2, 1, 0),
Precursor.IDs = c(50, 180, 4600),
Peptide.IDs = c(50, 170, 3200),
Protein.IDs = c(20, 40, 500),
ProteinGroup.IDs = c(15, 30, 400),
Profile = c("unique", "shared with at least 50%", "complete")
)
)
output <- plot_DC_stacked_barplot(input_list = data, level = "Precursor.IDs", label = "absolute")
expect_s3_class(output, "ggplot")
output <- plot_DC_stacked_barplot(input_list = data, level = "Precursor.IDs", label = "percentage")
expect_s3_class(output, "ggplot")
output <- plot_DC_stacked_barplot(input_list = data, level = "Protein.IDs", label = "absolute")
expect_s3_class(output, "ggplot")
output <- plot_DC_stacked_barplot(input_list = data, level = "Protein.IDs", label = "percentage")
expect_s3_class(output, "ggplot")
output <- plot_DC_stacked_barplot(input_list = data, level = "Peptide.IDs", label = "absolute")
expect_s3_class(output, "ggplot")
output <- plot_DC_stacked_barplot(input_list = data, level = "Peptide.IDs", label = "percentage")
expect_s3_class(output, "ggplot")
output <- plot_DC_stacked_barplot(input_list = data, level = "ProteinGroup.IDs", label = "absolute")
expect_s3_class(output, "ggplot")
output <- plot_DC_stacked_barplot(input_list = data, level = "ProteinGroup.IDs", label = "percentage")
expect_s3_class(output, "ggplot")
#test error messages
expect_error(plot_DC_stacked_barplot(input_list = data, level = "Preursor.IDs", label = "absolute"), "Please check your level entry - only use Precursor.IDs, Peptide.IDs, Protein.IDs or ProteinGroup.IDs")
expect_error(plot_DC_stacked_barplot(input_list = data, level = "Precursor.IDs", label = "absolte"), "Please check your label entry - only use absolute or percentage")
data <- list(
"A" = tibble::tibble(
Analysis = c("A", "A", "A"),
Precursor.IDs = c(50, 200, 4500),
Peptide.IDs = c(30, 190, 3000),
Protein.IDs = c(20, 40, 600),
ProteinGroup.IDs = c(15, 30, 450),
Profile = c("unique", "shared with at least 50%", "complete")
),
"B" = tibble::tibble(
Analysis = c("B", "B", "B"),
Nr.Missing.Values = c(2, 1, 0),
Precursor.IDs = c(50, 180, 4600),
Peptide.IDs = c(50, 170, 3200),
Protein.IDs = c(20, 40, 500),
ProteinGroup.IDs = c(15, 30, 400),
Profile = c("unique", "shared with at least 50%", "complete")
)
)
expect_error(plot_DC_stacked_barplot(input_list = data, level = "Precursor.IDs", label = "absolute"), "Wrong input detected - each input report requires the following columns Analysis, Nr.Missing.Values, ProteinGroup.IDs, Protein.IDs, Peptide.IDs, Precursor.IDs, Profile")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.